
C Programming

en.wikibooks.org

November 24, 2013

On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia
projects were licensed under Creative Commons Attribution-ShareAlike 3.0 Unported license. A
URI to this license is given in the list of figures on page 273. If this document is a derived work
from the contents of one of these projects and the content was still licensed by the project under
this license at the time of derivation this document has to be licensed under the same, a similar or a
compatible license, as stated in section 4b of the license. The list of contributors is included in chapter
Contributors on page 265. The licenses GPL, LGPL and GFDL are included in chapter Licenses on
page 277, since this book and/or parts of it may or may not be licensed under one or more of these
licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of
figures on page 273. This PDF was generated by the LATEX typesetting software. The LATEX source
code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from
the PDF file, you can use the pdfdetach tool including in the poppler suite, or the http://www.

pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility. Some PDF viewers may also let you save
the attachment to a file. After extracting it from the PDF file you have to rename it to source.7z.
To uncompress the resulting archive we recommend the use of http://www.7-zip.org/. The LATEX
source itself was generated by a program written by Dirk Hünniger, which is freely available under
an open source license from http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf.

http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.7-zip.org/
http://de.wikibooks.org/wiki/Benutzer:Dirk_Huenniger/wb2pdf

Contents

1 Why learn C? 3

2 History 7

3 What you need before you can learn 9
3.1 Getting Started . 9
3.2 Footnotes . 12

4 Using a Compiler 13

5 A taste of C 19

6 Intro exercise 21
6.1 Introductory Exercises . 21

7 Beginning C 25

8 Preliminaries 27
8.1 Basic Concepts . 27
8.2 Block Structure, Statements, Whitespace, and Scope 27
8.3 Basics of Using Functions . 29
8.4 The Standard Library . 30

9 Compiling 31
9.1 Preprocessor . 31
9.2 Syntax Checking . 32
9.3 Object Code . 32
9.4 Linking . 32
9.5 Automation . 33

10 Structure and style 35
10.1 C Structure and Style . 35
10.2 Introduction . 35
10.3 Line Breaks and Indentation . 36
10.4 Comments . 38
10.5 Links . 41

11 Error handling 43
11.1 Preventing divide by zero errors . 44
11.2 Signals . 44
11.3 setjmp . 45

III

Contents

12 Variables 47
12.1 Declaring, Initializing, and Assigning Variables 47
12.2 Literals . 49
12.3 The Four Basic Data Types . 49
12.4 sizeof . 51
12.5 Data type modifiers . 52
12.6 const qualifier . 52
12.7 Magic numbers . 53
12.8 Scope . 54
12.9 Other Modifiers . 54

13 Simple Input and Output 59
13.1 Output using printf() . 59
13.2 Other output methods . 61
13.3 Input using scanf() . 62
13.4 Links . 63

14 Simple math 65
14.1 Operators and Assignments . 65

15 Further math 73
15.1 Trigonometric functions . 73
15.2 Hyperbolic functions . 74
15.3 Exponential and logarithmic functions . 75
15.4 Power functions . 77
15.5 Nearest integer, absolute value, and remainder functions 78
15.6 Error and gamma functions . 80
15.7 Further reading . 81

16 Control 83
16.1 Conditionals . 83
16.2 Loops . 90
16.3 One last thing: goto . 94
16.4 Examples . 96
16.5 Further reading . 96

17 Procedures and functions 97
17.1 More on functions . 98
17.2 Writing functions in C . 98
17.3 Using C functions . 101
17.4 Functions from the C Standard Library . 101
17.5 Variable-length argument lists . 106

18 Preprocessor 109
18.1 Directives . 109
18.2 Useful Preprocessor Macros for Debugging 118

19 Libraries 125
19.1 What to put in header files . 127

IV

Contents

19.2 Further reading . 128

20 Standard libraries 129
20.1 History . 129
20.2 Design . 130
20.3 ANSI Standard . 130
20.4 Common support libraries . 132
20.5 Compiler built-in functions . 133
20.6 POSIX standard library . 133

21 File IO 135
21.1 Introduction . 135
21.2 Streams . 135
21.3 Standard Streams . 136
21.4 FILE pointers . 137
21.5 Opening and Closing Files . 137
21.6 Other file access functions . 138
21.7 Functions that Modify the File Position Indicator 139
21.8 Error Handling Functions . 141
21.9 Other Operations on Files . 142
21.10 Reading from Files . 143
21.11 Writing to Files . 151
21.12 References . 159

22 Beginning exercises 161
22.1 Variables . 161
22.2 Simple I/O . 163
22.3 Program Flow . 165
22.4 Functions . 166
22.5 Math . 166
22.6 Recursion . 167

23 In-depth C ideas 179

24 Arrays 181
24.1 Arrays . 181
24.2 Strings . 183

25 Pointers and arrays 185
25.1 Declaring pointers . 186
25.2 Assigning values to pointers . 187
25.3 Pointer dereferencing . 188
25.4 Pointers and Arrays . 189
25.5 Pointers in Function Arguments . 191
25.6 Pointers and Text Strings . 192
25.7 Pointers to Functions . 192
25.8 Practical use of function pointers in C . 194
25.9 Examples of pointer constructs . 196
25.10 sizeof . 196

V

Contents

25.11 External Links . 199

26 Memory management 201
26.1 EXAMPLE . 201
26.2 The calloc function . 203
26.3 The realloc function . 203
26.4 The free function . 203
26.5 References . 204

27 Strings 205
27.1 Syntax . 205
27.2 The <string.h> Standard Header . 206
27.3 Examples . 219
27.4 Further reading . 220

28 Complex types 221
28.1 Data structures . 221
28.2 Type modifiers . 223

29 Networking in UNIX 225
29.1 A simple client . 225
29.2 A simple server . 227
29.3 Useful network functions . 228
29.4 FAQs . 228

30 Common practices 231
30.1 Dynamic multidimensional arrays . 231
30.2 Constructors and destructors . 233
30.3 Nulling freed pointers . 234
30.4 Macro conventions . 235
30.5 Further reading . 235

31 C and beyond 237

32 Language extensions 239
32.1 External links . 239

33 Mixing languages 241
33.1 Assembler . 241
33.2 Cg . 241
33.3 Java . 241
33.4 Perl . 242
33.5 Python . 242
33.6 For further reading . 242
33.7 References . 242

34 Code library 243

35 Computer Programming 245

VI

Contents

36 Statements 247

37 C Reference Tables 249

38 Reference Tables 251
38.1 List of Keywords . 251
38.2 List of Standard Headers . 251
38.3 Table of Operators . 253
38.4 Table of Data Types . 255

39 Compilers 263
39.1 Free (or with a free version) . 263
39.2 Commercial . 264

40 Contributors 265

List of Figures 273

41 Licenses 277
41.1 GNU GENERAL PUBLIC LICENSE . 277
41.2 GNU Free Documentation License . 278
41.3 GNU Lesser General Public License . 279

1

1 Why learn C?

C1 is the most commonly used programming language2 for writing operating systems3.
Unix4 was the first operating system written in C. Later Microsoft Windows5, Mac OS X6,
and GNU/Linux7 were all written in C. Not only is C the language of operating systems,
it is the precursor and inspiration for almost all of the most popular high-level languages
available today. In fact, Perl8, PHP9, and Python10 are all written in C.

By way of analogy, let's say that you were going to be learning Spanish, Italian, French, or
Portuguese. Do you think knowing Latin would be helpful? Just as Latin was the basis of
all of those languages, knowing C will enable you to understand and appreciate an entire
family of programming languages built upon the traditions of C. Knowledge of C enables
freedom.

1.0.1 Why C, and not assembly language?

While assembly language can provide speed and maximum control of the program, C pro-
vides portability.

Different processors are programmed using different Assembly languages and having to
choose and learn only one of them is too arbitrary. In fact, one of the main strengths of C
is that it combines universality and portability across various computer architectures while
retaining most of the control of the hardware provided by assembly language.

For example, C programs can be compiled and run on the HP 50g calculator (ARM pro-
cessor), the TI-89 calculator (68000 processor), Palm OS Cobalt smartphones (ARM pro-
cessor), the original iMac (PowerPC), the Arduino (Atmel AVR), and the Intel iMac (Intel
Core 2 Duo). Each of these devices has its own assembly language that is completely
incompatible with the assembly language of any other.

Assembly11, while extremely powerful, is simply too difficult to program large applications
and hard to read or interpret in a logical way. C is a compiled language, which creates fast
and efficient executable files. It is also a small "what you see is all you get" language: a

1 http://en.wikipedia.org/wiki/C%20%28programming%20language%29

2 http://en.wikipedia.org/wiki/programming%20language

3 http://en.wikipedia.org/wiki/operating%20systems

4 http://en.wikipedia.org/wiki/Unix

5 http://en.wikipedia.org/wiki/Microsoft%20Windows

6 http://en.wikipedia.org/wiki/Mac%20OS%20X

7 http://en.wikipedia.org/wiki/Linux

8 http://en.wikipedia.org/wiki/Perl

9 http://en.wikipedia.org/wiki/PHP

10 http://en.wikipedia.org/wiki/Python%20%28programming%20language%29

11 http://en.wikipedia.org/wiki/Assembly%20language

3

http://en.wikipedia.org/wiki/C%20%28programming%20language%29
http://en.wikipedia.org/wiki/programming%20language
http://en.wikipedia.org/wiki/operating%20systems
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Microsoft%20Windows
http://en.wikipedia.org/wiki/Mac%20OS%20X
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
http://en.wikipedia.org/wiki/Assembly%20language

Why learn C?

C statement corresponds to at most a handful of assembly statements, everything else is
provided by library functions.

So is it any wonder that C is such a popular language?

Like toppling dominoes, the next generation of programs follows the trend of its ancestors.
Operating systems designed in C always have system libraries designed in C. Those system
libraries are in turn used to create higher-level libraries (like OpenGL12, or GTK13), and
the designers of those libraries often decide to use the language the system libraries used.
Application developers use the higher-level libraries to design word processors, games, media
players and the like. Many of them will choose to program in the language that the higher-
level library uses. And the pattern continues on and on and on......

1.0.2 Why C, and not another language?

The primary design of C is to produce portable code while maintaining performance and
minimizing footprint, as is the case for operating systems or other programs where a "high-
level" interface would affect performance. It is a stable and mature language whose features
are unlikely to disappear for a long time and has been ported to most, if not all, platforms.

For example, C programs can be compiled and run on the HP 50g calculator (ARM pro-
cessor), the TI-89 calculator (68000 processor), Palm OS Cobalt smartphones (ARM pro-
cessor), the original iMac (PowerPC), the Arduino (Atmel AVR), and the Intel iMac (Intel
Core 2 Duo). While nearly all popular programming languages will run on at least one of
these devices, C may be the only programming language that runs on more than 3 of these
devices.

One powerful reason is memory allocation. Unlike most computer languages, C allows the
programmer to write directly to memory. Key constructs in C such as structs, pointers
and arrays are designed to structure, and manipulate memory in an efficient, machine-
independent fashion. In particular, C gives control over the memory layout of data struc-
tures. Moreover dynamic memory allocation is under the control of the programmer, which
inevitably means that memory deallocation is the burden of the programmer. Languages
like Java14 and Perl shield the programmer from having to worry about memory allocation
and pointers. This is usually a good thing, since dealing with memory allocation when
building a high-level program is a highly error-prone process. However, when dealing with
low level code such as the part of the OS that controls a device, C provides a uniform, clean
interface. These capabilities just do not exist in other languages such as Java.

While Perl, PHP, Python and Ruby may be powerful and support many features not pro-
vided by default in C, they are not normally implemented in their own language. Rather,
most such languages initially relied on being written in C (or another high-performance pro-
gramming language), and would require their implementation be ported to a new platform
before they can be used.

12 http://en.wikipedia.org/wiki/OpenGL

13 http://en.wikipedia.org/wiki/GTK

14 http://en.wikipedia.org/wiki/Java%20%28programming%20language%29

4

http://en.wikipedia.org/wiki/OpenGL
http://en.wikipedia.org/wiki/GTK
http://en.wikipedia.org/wiki/Java%20%28programming%20language%29

Contents

As with all programming languages, whether you want to choose C over another high-level
language is a matter of opinion and both technical and business requirements.

5

2 History

The field of computing as we know it today started in 1947 with three scientists at Bell
Telephone Laboratories—William Shockley1, Walter Brattain2, and John Bardeen3—and
their groundbreaking invention: the transistor4. In 1956, the first fully transistor-based
computer, the TX-05, was completed at MIT. The first integrated circuit6 was created in
1958 by Jack Kilby7 at Texas Instruments, but the first high-level programming language
existed even before then.

"The Fortran8 project" was originally developed in 1954 by IBM. A shortening of "The
IBM Mathematical Formula Translating System", the project had the purpose of creating
and fostering development of a procedural, imperative programming language that was
especially suited to numeric computation and scientific computing. It was a breakthrough
in terms of productivity and programming ease (compared to assembly language) and speed
(Fortran programs ran nearly as fast as, and in some cases, just as fast as, programs written
in assembly). Furthermore, Fortran was written at a high-enough level (and thus was
machine independent enough) to become the first widely adopted programming language.
The Algorithmic Language (Algol 589) was derived from Fortran in 1958 and evolved into
Algol 6010 in 1960. The Combined Programming Language (CPL)11 was then created out
of Algol 60 in 1963. In 1967, it evolved into Basic CPL12, which was itself, the base for B13

in 1969. Finally, B was the root of C, created in 1971.

B was the first language in C's direct lineage. B was created by Ken Thompson14 at
Bell Labs and was an interpreted language15 used in early internal versions of the UNIX
operating system. Thompson and Dennis Ritchie16, also working at Bell Labs, improved
B and called the result NB. Further extensions to NB created its logical successor, C, a
compiled language17. Most of UNIX was rewritten in NB, and then C, which resulted in a
more portable operating system.

1 http://en.wikipedia.org/wiki/William%20Shockley

2 http://en.wikipedia.org/wiki/Walter%20Brattain

3 http://en.wikipedia.org/wiki/John%20Bardeen

4 http://en.wikipedia.org/wiki/transistor

5 http://en.wikipedia.org/wiki/TX-0

6 http://en.wikipedia.org/wiki/integrated%20circuit

7 http://en.wikipedia.org/wiki/Jack%20Kilby

8 http://en.wikipedia.org/wiki/Fortran

9 http://en.wikipedia.org/wiki/ALGOL%2058

10 http://en.wikipedia.org/wiki/ALGOL%2060

11 http://en.wikipedia.org/wiki/Combined%20Programming%20Language

12 http://en.wikipedia.org/wiki/BCPL

13 http://en.wikipedia.org/wiki/B%20%28programming%20language%29

14 http://en.wikipedia.org/wiki/Ken%20Thompson

15 http://en.wikipedia.org/wiki/interpreted%20language

16 http://en.wikipedia.org/wiki/Dennis%20Ritchie

17 http://en.wikipedia.org/wiki/compiled%20language

7

http://en.wikipedia.org/wiki/William%20Shockley
http://en.wikipedia.org/wiki/Walter%20Brattain
http://en.wikipedia.org/wiki/John%20Bardeen
http://en.wikipedia.org/wiki/transistor
http://en.wikipedia.org/wiki/TX-0
http://en.wikipedia.org/wiki/integrated%20circuit
http://en.wikipedia.org/wiki/Jack%20Kilby
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/ALGOL%2058
http://en.wikipedia.org/wiki/ALGOL%2060
http://en.wikipedia.org/wiki/Combined%20Programming%20Language
http://en.wikipedia.org/wiki/BCPL
http://en.wikipedia.org/wiki/B%20%28programming%20language%29
http://en.wikipedia.org/wiki/Ken%20Thompson
http://en.wikipedia.org/wiki/interpreted%20language
http://en.wikipedia.org/wiki/Dennis%20Ritchie
http://en.wikipedia.org/wiki/compiled%20language

History

The portability of UNIX was the main reason for the initial popularity of both UNIX and C.
Rather than creating a new operating system for each new machine, system programmers
could simply write the few system-dependent parts required for the machine, and then write
a C compiler for the new system. Since most of the system utilities were thus written in C,
it simply made sense to also write new utilities in C.

The American National Standards Institute began work on standardizing the C language in
1983, and completed the standard in 1989. The standard, ANSI X3.159-1989 "Programming
Language C", served as the basis for all implementations of C compilers. The standards
were later updated in 1990 and 1999, allowing for features that were either in common use,
or were appearing in C++.

8

3 What you need before you can learn

3.1 Getting Started

The goal of this book is to introduce you to the C programming language. Basic computer
literacy is assumed, but no special knowledge is needed.

Before you can start programming in C, you will need a C compiler1. A compiler is a
program that converts C code into executable machine code2.3

Popular C compilers Include:

Name Website Platform License Details
Microsoft Visual

Studio Express4
Visual Studio5 Windows Free Version Powerful and

student-friendly
version of an
industry standard
compiler.

Tiny C Compiler
(TCC)6

tinycc7 GNU/Linux,
Windows

LGPL8 Small, fast and
simple compiler.

Clang9 clang10 GNU/Linux,
Windows, Unix,
OS X

University of
Illinois/NCSA
License11

A front-end
which compiles
(Objective)
C/C++ using
a LLVM backend.

GNU C Com-
piler12

gcc13 GNU/Linux,
MinGW(Windows)14,
Unix, OS X.

GPL15 The De facto
standard. Ships
with most Unix
systems.

1 http://en.wikipedia.org/wiki/Compiler

2 http://en.wikipedia.org/wiki/machine%20code

3 Actually, GCC's(GNU C Compiler) cc (C Compiler) translates the input .c file to the target cpu's
assembly, output is written to an .s file. Then as (assembler) generates a machine code file from the .s
file. Pre-processing is done by another sub-program cpp (C PreProcessor), which is not to be confused
with c++ the compiler.

4 http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express

5 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express

6 http://en.wikipedia.org/wiki/Tiny%20C%20Compiler

7 http://www.tinycc.org

8 http://en.wikipedia.org/wiki/GNU%20Lesser%20General%20Public%20License

9 http://en.wikipedia.org/wiki/Clang

10 http://clang.llvm.org

11 http://opensource.org/licenses/UoI-NCSA.php

12 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

13 http://gcc.gnu.org

14 http://mingw.org

15 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

9

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/machine%20code
http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
http://www.tinycc.org
http://en.wikipedia.org/wiki/GNU%20Lesser%20General%20Public%20License
http://en.wikipedia.org/wiki/Clang
http://clang.llvm.org
http://opensource.org/licenses/UoI-NCSA.php
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://gcc.gnu.org
http://mingw.org
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

What you need before you can learn

The minimum software requirements to program in C is a text editor16, as opposed to a word
processor17. A plain text Notepad Editor can be used but it does not offer any advanced
capabilities such as code completion or debugging. There are many text editors (see List of
Text Editors18), among the most popular are Notepad++19 for Windows, Sublime Text20,
Vim21 and Emacs22 are also available cross-platform. These text editors come with syntax
highlighting23 and line numbers, which makes code easier to read at a glance, and to spot
syntax errors.

Though not absolutely needed, many programmers prefer and recommend using an In-
tegrated development environment24 (IDE) instead of a text editor. An IDE is a suite
of programs that developers need, combined into one convenient package, usually with a
graphical user interface. These programs include a text editor, linker, project management
and sometimes bundled with a compiler. They also typically include a debugger, a tool
that will preserve your C source code after compilation and enable you to do such things
as step through it manually, or alter data as an aid to finding and correcting programming
errors.

For beginners it is recommended not to use an IDE, since it hides most of what is going on.
Using the command line builds up familiarity with the toolchain. An IDE may be useful
to somebody with programming experience but knows how the IDE works. So as a general
guideline: Do not use an IDE unless you know what the IDE does!

Popular IDEs Include:

Name Website Platform License Details
Eclipse

CDT25
Eclipse26 Windows,

Mac OS X,
Linux

Open source Eclipse27

IDE for
C/C++ de-
velopement, a
popular open
source IDE.

Netbeans28 Netbeans29 Cross-
platform

CDDL30 and
GPL31 2.0

A Good com-
parable ma-
tured IDE to
Eclipse.

16 http://en.wikipedia.org/wiki/Text%20Editor

17 http://en.wikipedia.org/wiki/Word%20Processor

18 http://en.wikipedia.org/wiki/List%20of%20text%20editors

19 http://en.wikipedia.org/wiki/Notepad%2B%2B

20 http://en.wikipedia.org/wiki/Sublime%20Text

21 http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29

22 http://en.wikipedia.org/wiki/Emacs

23 http://en.wikipedia.org/wiki/syntax%20highlighting

24 http://en.wikipedia.org/wiki/Integrated%20development%20environment

25 http://en.wikipedia.org/wiki/Eclipse_%28software%29

26 http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junor

27 http://en.wikipedia.org/wiki/Eclipse%20%28software%29

28 http://en.wikipedia.org/wiki/Netbeans

29 http://netbeans.org

30 http://en.wikipedia.org/wiki/Common%20Development%20and%20Distribution%20License

31 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

10

http://en.wikipedia.org/wiki/Text%20Editor
http://en.wikipedia.org/wiki/Word%20Processor
http://en.wikipedia.org/wiki/List%20of%20text%20editors
http://en.wikipedia.org/wiki/Notepad%2B%2B
http://en.wikipedia.org/wiki/Sublime%20Text
http://en.wikipedia.org/wiki/Vim%20%28text%20editor%29
http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/syntax%20highlighting
http://en.wikipedia.org/wiki/Integrated%20development%20environment
http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junor
http://en.wikipedia.org/wiki/Eclipse%20%28software%29
http://en.wikipedia.org/wiki/Netbeans
http://netbeans.org
http://en.wikipedia.org/wiki/Common%20Development%20and%20Distribution%20License
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

Getting Started

Name Website Platform License Details
Anjuta32 Anjuta33 Linux GPL34 A GTK+2

IDE for the
GNOME35

desktop envi-
ronment.

Geany36 geany37 Cross-
platform

GPL38 A lightweight
cross-platform
GTK+
notepad based
on Scintilla,
with basic
IDE features.

Little C
Compiler
(LCC)39

lcc40 Windows Free for non-
commercial
use

Small open
source com-
piler.

Xcode41 Xcode42 Mac OS X Free Available for
free at Mac
App Store43.

Pelles C44 Pelles C45 Windows,
Pocket PC

Free A complete
C develop-
ment kit for
Windows.

Dev C++46 Dev C++47 Windows GPL48 Updated ver-
sion of the
formerly pop-
ular Blood-
shed Dev-
C++.

32 http://en.wikipedia.org/wiki/Anjuta

33 http://anjuta.org

34 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

35 http://en.wikipedia.org/wiki/GNOME

36 http://en.wikipedia.org/wiki/Geany

37 http://www.geany.org

38 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

39 http://en.wikipedia.org/wiki/LCC%20%28compiler%29

40 http://www.cs.virginia.edu/~lcc-win32

41 http://en.wikipedia.org/wiki/Xcode

42 https://developer.apple.com/xcode

43 https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12

44 http://en.wikipedia.org/wiki/Pelles%20C

45 http://smorgasbordet.com/pellesc

46 http://en.wikipedia.org/wiki/Dev%20C%2B%2B%20

47 http://sourceforge.net/projects/orwelldevcpp/

48 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

11

http://en.wikipedia.org/wiki/Anjuta
http://anjuta.org
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/GNOME
http://en.wikipedia.org/wiki/Geany
http://www.geany.org
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/LCC%20%28compiler%29
http://www.cs.virginia.edu/~lcc-win32
http://en.wikipedia.org/wiki/Xcode
https://developer.apple.com/xcode
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12
http://en.wikipedia.org/wiki/Pelles%20C
http://smorgasbordet.com/pellesc
http://en.wikipedia.org/wiki/Dev%20C%2B%2B%20
http://sourceforge.net/projects/orwelldevcpp/
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

What you need before you can learn

Name Website Platform License Details
Microsoft

Visual Studio
Express49

Visual
C++50

Windows Free A powerful,
user friendly
version of an
industry stan-
dard com-
piler.

CodeLite51 CodeLite52 Cross-
platform

GPL53 2 Free IDE for
C/C++ de-
velopment.

Code::Blocks54 Code::Blocks55 Cross-
platform

GPL56 3.0 Built to meet
users' most
demanding
needs. Very
extensible and
fully config-
urable.

On GNU/Linux, GCC is almost always included automatically.

On Microsoft Windows, Dev-C++ is recommended for beginners because it is easy to use,
free, and simple to install. However, the official release of Dev-C++ hasn't been updated
since 22 February 2005.57 An unofficial58 version of Dev-C++ is being actively developed
however.59 An alternate option for those working only in the Windows environment is the
official Microsoft Visual Studio Express which is free and has an excellent debugger.

On Mac OS X, the Xcode IDE provides the compilers needed to compile various source
files. The newer versions do not not include the command line tools. They need to be
downloaded via Xcode->Preferences->Downloads.

3.2 Footnotes

pl:C/Czego potrzebujesz60

49 http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express

50 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express

51 http://en.wikipedia.org/wiki/CodeLite

52 http://codelite.org/

53 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

54 http://en.wikipedia.org/wiki/Code%3A%3ABlocks

55 http://codeblocks.org/

56 http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

57 http://sourceforge.net/news/?group_id=10639

58 http://sourceforge.net/projects/orwelldevcpp/

59 http://orwelldevcpp.blogspot.com/

60 http://pl.wikibooks.org/wiki/C%2FCzego%20potrzebujesz

12

http://en.wikipedia.org/wiki/Microsoft%20Visual%20Studio%20Express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
http://en.wikipedia.org/wiki/CodeLite
http://codelite.org/
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://en.wikipedia.org/wiki/Code%3A%3ABlocks
http://codeblocks.org/
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License
http://sourceforge.net/news/?group_id=10639
http://sourceforge.net/projects/orwelldevcpp/
http://orwelldevcpp.blogspot.com/
http://pl.wikibooks.org/wiki/C%2FCzego%20potrzebujesz

4 Using a Compiler

4.0.1 Dev-C++

Dev C++1 is an Integrated Development Environment(IDE) for the C++ programming
language, available from Bloodshed Software2. An updated version is available at Orwell
Dev-C++3.

C++ is a programming language which contains within itself, most of the C language,
plus extensions. Most C++ compilers will compile C programs, sometimes with a few
adjustments (like invoking them with a different name or command line switch). Therefore,
you can use Dev C++ for C development.

However, Dev C++ is not the compiler. It is designed to use the MinGW4 or Cygwin5

versions of GCC6 - both of which can be obtained as part of the Dev C++ package,
although they are completely different projects.

Dev C++ simply provides an editor, syntax highlighting, some facilities for the visualisation
of code (like class and package browsing) and a graphical interface to the chosen compiler.
Because Dev C++ analyses the error messages produced by the compiler and attempts to
distinguish the line numbers from the errors themselves, the use of other compiler software
is discouraged since the format of their error messages is likely to be different.

The latest version of Dev-C++ is a beta7 for version 5. However, it still has a significant
number of bugs. All the features are there, and it is quite usable. It is considered one of
the best free software C IDEs available for Windows.

A version of Dev C++ for Linux is in the pipeline. It is not quite usable yet, however.
Linux users already have a wealth of IDEs available. (e.g. KDevelop8 and Anjuta9.) Most
of the graphical text editors, and other common editors such as emacs and vi(m), support
syntax highlighting10.

1 http://en.wikipedia.org/wiki/Dev-C%20Plus%20Plus

2 http://www.bloodshed.net/

3 http://orwelldevcpp.blogspot.com/

4 http://en.wikipedia.org/wiki/MinGW

5 http://en.wikipedia.org/wiki/Cygwin

6 http://en.wikipedia.org/wiki/GCC

7 http://en.wikipedia.org/wiki/beta%20version

8 http://en.wikipedia.org/wiki/KDevelop

9 http://en.wikipedia.org/wiki/Anjuta

10 http://en.wikipedia.org/wiki/syntax%20highlighting

13

http://en.wikipedia.org/wiki/Dev-C%20Plus%20Plus
http://www.bloodshed.net/
http://orwelldevcpp.blogspot.com/
http://en.wikipedia.org/wiki/MinGW
http://en.wikipedia.org/wiki/Cygwin
http://en.wikipedia.org/wiki/GCC
http://en.wikipedia.org/wiki/beta%20version
http://en.wikipedia.org/wiki/KDevelop
http://en.wikipedia.org/wiki/Anjuta
http://en.wikipedia.org/wiki/syntax%20highlighting

Using a Compiler

4.0.2 GCC

The GNU Compiler Collection11 (GCC) is a free12 set of compilers developed by the Free
Software Foundation13.

Steps for Obtaining the GCC Compiler if You're on GNU/Linux

On GNU/Linux, Installing the GNU C Compiler can vary in method from distribution14

to distribution. (Type in cc -v to see if it is installed already.)

• For Redhat15, get a GCC RPM16, e.g. using Rpmfind and then install (as root) using
rpm -ivh gcc-version-release.arch.rpm

• For Fedora Core17, install the GCC compiler (as root) by using yum18 install gcc.
• For Mandrake19, install the GCC compiler (as root) by using urpmi20 gcc

• For Debian21, install the GCC compiler (as root) by using apt-get22 install gcc.
• For Ubuntu23, install the GCC compiler (along with other necessary tools) by using sudo

apt-get24 install build-essential, or by using Synaptic. You do not need Universe
enabled.

• For Slackware25, the package is available on their website26 - simply download, and type
installpkg gcc-xxxxx.tgz

• For Gentoo27, you should already have GCC installed as it will have been used when
you first installed. To update it run (as root) emerge -uav gcc.

• For Arch Linux28, install the GCC compiler (as root) by using pacman -S gcc.
• If you cannot become root, get the GCC tarball from ftp://ftp.gnu.org/ and follow the

instructions in it to compile and install in your home directory. Be warned though, you
need a C compiler to do that - yes, GCC itself is written in C.

• You can use some commercial C compiler/IDE.

Steps for Obtaining the GCC Compiler if You're on BSD Family Systems

11 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

12 http://en.wikipedia.org/wiki/free%20software

13 http://en.wikipedia.org/wiki/Free%20Software%20Foundation

14 http://en.wikipedia.org/wiki/Linux%20distribution

15 http://en.wikipedia.org/wiki/Redhat

16 http://en.wikipedia.org/wiki/RPM%20Package%20Manager

17 http://en.wikipedia.org/wiki/Fedora%20Core

18 http://en.wikipedia.org/wiki/yum

19 http://en.wikipedia.org/wiki/Mandrake

20 http://en.wikipedia.org/wiki/urpmi

21 http://en.wikipedia.org/wiki/Debian

22 http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool

23 http://en.wikipedia.org/wiki/Ubuntu

24 http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool

25 http://en.wikipedia.org/wiki/Slackware

26 http://www.slackware.com/pb/

27 http://en.wikipedia.org/wiki/Gentoo

28 http://en.wikipedia.org/wiki/Arch%20Linux

14

http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://en.wikipedia.org/wiki/free%20software
http://en.wikipedia.org/wiki/Free%20Software%20Foundation
http://en.wikipedia.org/wiki/Linux%20distribution
http://en.wikipedia.org/wiki/Redhat
http://en.wikipedia.org/wiki/RPM%20Package%20Manager
http://en.wikipedia.org/wiki/Fedora%20Core
http://en.wikipedia.org/wiki/yum
http://en.wikipedia.org/wiki/Mandrake
http://en.wikipedia.org/wiki/urpmi
http://en.wikipedia.org/wiki/Debian
http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
http://en.wikipedia.org/wiki/Ubuntu
http://en.wikipedia.org/wiki/Advanced%20Packaging%20Tool
http://en.wikipedia.org/wiki/Slackware
http://www.slackware.com/pb/
http://en.wikipedia.org/wiki/Gentoo
http://en.wikipedia.org/wiki/Arch%20Linux

Footnotes

• For Mac OS X29, FreeBSD30, NetBSD31, OpenBSD32, DragonFly BSD33, Darwin34 the
port of GNU gcc is available in the base system, or it could be obtained using the ports
collection or pkgsrc35.

Steps for Obtaining the GCC Compiler if You're on Windows

There are two ways to use GCC on Windows: Cygwin and MinGW. Applications compiled
with Cygwin will not run on any computer without Cygwin, so MinGW is recommended.
MinGW is simpler to install, and takes less disk space.

To get MinGW, do this:

1. Go to http://sourceforge.net/projects/mingw/ download and save this to your
hard drive.

2. Once the download is finished, open it and follow the instructions. You can also
choose to install additional compilers, or the tool Make, but these aren't necessary.

3. Now you need to set your PATH. Right-click on "My computer" and click "Properties".
Go to the "Advanced" tab and click on "Environment variables". Go to the "System
variables" section and scroll down until you see "Path". Click on it, then click "edit".
Add ";C:\mingw\bin\" (without the quotes) to the end.

4. To test if GCC works, open a command prompt and type "gcc". You should get the
message "gcc: no input files". If you get this message, GCC is installed correctly.

To get Cygwin, do this:

1. Go to http://www.cygwin.com and click on the "Install Cygwin Now" button in the
upper right corner of the page.

2. Click "run" in the window that pops up, and click "next" several times, accepting all
the default settings.

3. Choose any of the Download sites ("ftp.easynet.be", etc.) when that window comes
up; press "next" and the Cygwin installer should start downloading.

4. When the "Select Packages" window appears, scroll down to the heading "Devel" and
click on the "+" by it. In the list of packages that now displays, scroll down and
find the "gcc-core" package; this is the compiler. Click once on the word "Skip", and
it should change to some number like "3.4" etc. (the version number), and an "X"
will appear next to "gcc-core" and several other related packages that will now be
downloaded.

5. Click "next" and the compiler as well as the Cygwin tools should start downloading;
this could take a while. While you're waiting for the installation to finish, download
any text-editor designed for programming. While Cygwin does include some, you may
prefer doing a web search to find other alternatives. While using a stock text editor
is possible, it is not ideal.

6. Once the Cygwin downloads are finished and you have clicked "next", etc. to finish
the installation, double-click the Cygwin icon on your desktop to begin the Cygwin

29 http://en.wikipedia.org/wiki/Mac%20OS%20X

30 http://en.wikipedia.org/wiki/FreeBSD

31 http://en.wikipedia.org/wiki/NetBSD

32 http://en.wikipedia.org/wiki/OpenBSD

33 http://en.wikipedia.org/wiki/DragonFly%20BSD

34 http://en.wikipedia.org/wiki/Darwin

35 http://en.wikipedia.org/wiki/pkgsrc

15

http://sourceforge.net/projects/mingw/
http://www.cygwin.com
http://en.wikipedia.org/wiki/Mac%20OS%20X
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/NetBSD
http://en.wikipedia.org/wiki/OpenBSD
http://en.wikipedia.org/wiki/DragonFly%20BSD
http://en.wikipedia.org/wiki/Darwin
http://en.wikipedia.org/wiki/pkgsrc

Using a Compiler

"command prompt". Your home directory will automatically be set up in the Cygwin
folder, which now should be at "C:\cygwin" (the Cygwin folder is in some ways like
a small unix/linux computer on your Windows machine -- not technically of course,
but it may be helpful to think of it that way).

7. Type "gcc" at the Cygwin prompt and press "enter"; if "gcc: no input files" or some-
thing like it appears you have succeeded and now have the gcc compiler on your
computer (and congratulations -- you have also just received your first error mes-
sage!).

The current stable (usable) version of GCC is 5.1.6 published on 2009-10-02, which supports
several platforms. In fact, GCC is not only a C compiler, but a family of compilers for several
languages, such as C++, Ada36, Java37, and Fortran38.

Once gcc is installed, it can be called with a list of c source files that have been written
but not yet compiled. eg. there is a main.c file that includes a some functions described in
myfun.h and implemented in myfun_a.c and myfun_b.c , then it is enough to write

gcc main.c myfun_a.c myfun_b.c

myfun.h is included in main.c , but if is in a separate header files directory , then that
directory can be listed after a "-I " switch.

In larger programs, Makefiles and gnu make program can compile c files into intermediate
files ending with suffix .o which can be linked by gcc.

How to compile each object file is usually described in the Makefile with the object file as
a label ending with a colon followed by two spaces (tabs are often bad characters) followed
by a list of other files that are dependencies, eg. .c files and .o files compiled in another
section, and on the next line, the invocation of gcc that is required. typing man make or
info make often gives the information needed to jog the memory on how to use make, and
the same goes for gcc, although gcc has a lot of option switches, the main ones being -g to
generate debugging for gdb to allow it to show source code during stepping through of the
machine code program. gdb has a 'h' command that shows what it can do, and is usually
started with 'gdb a.out' if a.out is the anonymous executable machine code file that was
compiled by gcc.

4.0.3 Embedded systems

• Most CPUs are microcontrollers in embedded systems, often programmed in C, but
most of the compilers mentioned above (except GCC) do not support such CPUs. For
specialized compilers that do support embedded systems, see Embedded Systems/C Pro-
gramming39.

36 http://en.wikibooks.org/wiki/Ada%20Programming

37 http://en.wikibooks.org/wiki/Java

38 http://en.wikibooks.org/wiki/Fortran

39 http://en.wikibooks.org/wiki/Embedded%20Systems%2FC%20Programming

16

http://en.wikibooks.org/wiki/Ada%20Programming
http://en.wikibooks.org/wiki/Java
http://en.wikibooks.org/wiki/Fortran
http://en.wikibooks.org/wiki/Embedded%20Systems%2FC%20Programming

Footnotes

pl:C/Używanie kompilatora40

40 http://pl.wikibooks.org/wiki/C%2FU%C5%BCywanie%20kompilatora

17

http://pl.wikibooks.org/wiki/C%2FU%C5%BCywanie%20kompilatora

5 A taste of C

As with nearly every other programming language learning book, we use the Hello world1

program to introduce you to C.

#include <stdio.h>

int main(void)

{

puts("Hello, world!");

return 0;

}

This program prints "Hello, world!" and then exits.

Enter this code into your text editor or IDE, and save it as "hello.c".

Then, presuming you are using GCC, type gcc -o hello hello.c. This tells gcc to com-
pile your hello.c program into a form the machine can execute. The '-o hello' tells it to call
the compiled program 'hello'.

If you have entered this correctly, you should now see a file called hello. This file is the
binary version of your program, and when run should display "Hello, world!"

Here is an example of how compiling and running looks when using a terminal on a unix
system. ls is a common unix command that will list the files in the current directory,
which in this case is the directory progs inside the home directory (represented with the
special tilde, ˜, symbol). After running the gcc command, ls will list a new file, hello in
green. Green is the standard color coding of ls for executable files.

˜/progs$ ls

hello.c

˜/progs$ gcc -o hello hello.c

˜/progs$ ls

hello hello.c

˜/progs$./hello

Hello, world!

˜/progs$

5.0.4 Part-by-part explanation

#include <stdio.h> tells the C compiler to find the standard header called <stdio.h>2

and add it to this program. In C, you often have to pull in extra optional components when

1 http://en.wikipedia.org/wiki/Hello%20world%20program

2 http://en.wikipedia.org/wiki/stdio.h

19

http://en.wikipedia.org/wiki/Hello%20world%20program
http://en.wikipedia.org/wiki/stdio.h

A taste of C

you need them. <stdio.h> contains descriptions of standard input/output functions which
you can use to send messages to a user, or to read input from a user.

int main(void) is something you'll find in every C program. Every program has a main
function. Generally, the main function is where a program begins. However, one C program
can be scattered across multiple files, so you won't always find a main function in every file.
The int at the beginning means that main will return an integer to the operating system
when it is finished.

puts("Hello, world!"); is the statement that actually puts the message to the screen.
puts is a string printing function that is declared in the file stdio.h (which is why you had
to #include that at the start of the program) puts automatically prints a newline at the
end of the string.

return 0; will return zero (which is the integer3 referred to on line 3) to the operating
system. When a program runs successfully its return value is zero (GCC4 complains if it
doesn't when compiling). A non-zero value is returned to indicate a warning or error.

The empty line is there because it is (at least on UNIX) considered good practice to end a
file with a new line. In gcc using the -Wall -pedantic -ansi options, if the file does not
end with a new line this message is displayed: "warning: no newline at end of file". (The
newline isn't shown on the example because MediaWiki automatically removes it)

3 http://en.wikipedia.org/wiki/Integer%20%28computer%20science%29

20

http://en.wikipedia.org/wiki/Integer%20%28computer%20science%29

6 Intro exercise

6.1 Introductory Exercises

6.1.1 On GCC

If you are using a Unix(-like) system, such as GNU/Linux1, Mac OS X2, or Solaris3, it will
probably have GCC installed. Type the hello world program into a file called first.c and
then compile it with gcc. Just type:

gcc first.c

Then run the program by typing:

./a.out

or, If you are using Cygwin.

a.exe

You should now see your very first C program.

There are a lot of options you can use with the gcc compiler. For example, if you want the
output to have a name other than a.out, you can use the -o option. The following shows a
few examples:

-c

indicates that the compiler is supposed to generate an object file, which can be later linked
to other files to form a final program.

-o

indicates that the next parameter is the name of the resulting program (or library). If
this option is not specified, the compiled program will, for historic reasons, end up in a
file called "a.out" or "a.exe" (for cygwin users).

-g3

1 http://en.wikipedia.org/wiki/GNU%2FLinux

2 http://en.wikipedia.org/wiki/Mac%20OS%20X

3 http://en.wikipedia.org/wiki/Solaris%20Operating%20Environment

21

http://en.wikipedia.org/wiki/GNU%2FLinux
http://en.wikipedia.org/wiki/Mac%20OS%20X
http://en.wikipedia.org/wiki/Solaris%20Operating%20Environment

Intro exercise

indicates that debugging information should be added to the results of compilation.

-O2 -ffast-math

indicates that the compilation should be optimized.

-W -Wall -fno-common -Wcast-align -Wredundant-decls -Wbad-function-cast

-Wwrite-strings -Waggregate-return -Wstrict-prototypes

-Wmissing-prototypes

indicates that gcc should warn about many types of suspicious code that are likely to be
incorrect.

-E

indicates that gcc should only preprocess the code; this is useful when you are having
trouble understanding what gcc is doing with #include and #define, among other things.

All the options are well documented in the manual page4 for GCC.

the classical hello world program

The basic hello world program, from the K+R book on C, is often worth memorising, just
for the structure of the main function which accepts switches, just like gcc is a program
with a main function that accepts switches.

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

printf("Hello WOrld! \n");

return 0;

}

The commented program below is basically the same, with some variations that have the
same effect. e.g. a " argv" , or "pointer to pointers" , is the same as *x[] or "array of pointers"
; and "exit(0)" does the same as "return 0" for the main function.

Note: It is a good chance to say that we usually return or exit a function with the 0 code
when all of the commands executed successfully. e.g. in our Hello World program, all the
commands before "return(0)", or "exit(0)" executed with no error. You will notice that this
convention is very common, especially in the main function.

/* Hello World */

/*

this gives include statement, brings in the header file stdio.h ,

located often on unix systems at the directory /usr/include/,

and includes the printf() function, as well as others, snprintf, scanf,

getchar, getline.

In C, functions that are exported have their "signatures" - function name and

parameter list -

4 http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Debugging-Options.html

22

http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Debugging-Options.html

Introductory Exercises

listed in header files for exporting, and then the same signatures are defined

in another file,

often of the same name, to be compiled once into an object file, and on unix

systems often reside

in /usr/lib/ with file names like stdlib.a or stdlib.so , often as soft links

to versioned files

e.g. stdlib.1.3.so ,

*/

#include <stdio.h>

/*

this gives the standard library, which has functions

such as rand() random number generation (e.g. for games)

malloc() and free() for dynamic heap memory allocation as opposed to stack

memory allocation.

stack memory can be allocated by declaring variables and arrays at the start

of a function , including

the main function, and will be destroyed when the function exits.

*/

#include <stdlib.h>

/*

the next line is the standard expected function name "main" and argument list

of the first function

to be executed for this program when the compiled program is executed.

the first argument is the number of arguments, and the second argument is an

array of pointers to

arrays of characters (strings) which contain arguments .e.g. "-?" , "-v" ,

"-c"

*/

int main(int n_args, char* args[]) {

printf("Hello World!"); // outputs a string without formatting.

exit(0); // stdlib.h function to exit with a code, if executed from say a

bash shell script, 0 will be

// returned , which can be used inside a shell conditional if

statement.

}

6.1.2 On IDEs

If you are using a commercial IDE you may have to select console project, and to compile
you just select build from the menu or the toolbar. The executable will appear inside the
project folder, but you should have a menu button so you can just run the executable from
the IDE.

One can also find opensource IDE's like Eclipse5, Netbeans6 or Qt Creator7. The process
will be the same as a commercial IDE.

5 http://en.wikipedia.org/wiki/Eclipse_%28software%29

6 http://en.wikipedia.org/wiki/Netbeans

7 http://en.wikipedia.org/wiki/Qt_Creator

23

http://en.wikipedia.org/wiki/Eclipse_%28software%29
http://en.wikipedia.org/wiki/Netbeans
http://en.wikipedia.org/wiki/Qt_Creator

7 Beginning C

25

8 Preliminaries

8.1 Basic Concepts

Before one gets too deep into learning C syntax and programming constructs, it is beneficial
to learn the meaning of a few key terms that are central to a thorough understanding of C.

8.2 Block Structure, Statements, Whitespace, and Scope

Now we discuss the basic structure of a C program. If you're familiar with PASCAL1,
you may have heard it referred to as a block-structured language. C does not have
complete block structure (and you'll find out why when you go over functions in detail) but
it is still very important to understand what blocks are and how to use them.

So what is in a block? Generally, a block consists of executable statements.

Before we say what a block is, what's a statement? One way to put it is that statements
are text the compiler will attempt to turn into executable instructions, and the whitespace
that surrounds them. An easier way to put it is that statements are bits of code that do
things, like this:

int i = 6; /* this declares a variable 'i', and sets it to equal 6 */

You might have noticed the semicolon at the end of the statement. Statements in C always
end with a semicolon (;) character. Leaving off the semicolon is a common mistake that a
lot of people make, beginners and experts alike! So until it becomes second nature, be sure
to double check your statements!

Since C is a "free-format" language, several statements can share a single line in the source
file, like so:

/* this declares the variables 'i', 'test', 'foo', and 'bar'

note that ONLY 'bar' is set to six! */

int i, test, foo, bar = 6;

There are several kinds of statements, and you've seen some of them. Assignment (i =
6;), conditional and flow-control. A substantial portion of this book deals with statement
construction.

Now back to blocks. In C, blocks begin with an opening brace "{" and end with a closing
brace "}". Blocks can contain other blocks which can contain their own blocks, and so on.

1 http://en.wikipedia.org/wiki/Pascal%20%28programming%20language%29

27

http://en.wikipedia.org/wiki/Pascal%20%28programming%20language%29

Preliminaries

Let's show an example of blocks.

int main(void)

{

/* this is a 'block' */

int i = 5;

{

/* this is also a 'block,' separate from the last one */

int i = 6;

}

return 0;

}

Blocks come in handy with readability and scope. You'll learn a little more about scope in
a second.

Whitespace refers to the tab, space and newline/EOL (End Of Line) characters that
separate the text characters that make up source code lines. Like many things in life, it's
hard to appreciate whitespace until it's gone. To a C compiler, the source code

printf("Hello world"); return 0;

is the same as

printf("Hello world");

return 0;

which is the same as

printf (

"Hello world") ;

return 0;

The compiler simply skips over whitespace. However, it is common practice to use spaces
(and tabs) to organize source code for human readability. You can use blocks without a
conditional, loop, or other statement to organize your code.

In C, most of the time we do not want other functions or other programmer's routines2

accessing data that we are currently manipulating. This is why it is important to understand
the concept of scope.

Scope describes the level at which a piece of data or a function is visible. There are two
kinds of scope in C, local and global. When we speak of something being global, we
speak of something that can be seen or manipulated from anywhere in the program. When
we speak of something being local, we speak of something that can be seen or manipulated
only within the block it was declared.

2 http://en.wikipedia.org/wiki/Subroutine

28

http://en.wikipedia.org/wiki/Subroutine

Basics of Using Functions

Let's show some examples, to give a better picture of the idea of scope.

int i = 5; /* this is a 'global' variable, anywhere in the program can access it

*/

/* this is a function, all variables inside of it

are "local" to the function. */

int main(void)

{

int i = 6; /* 'i' now equals 6 */

printf("%d\n", i); /* prints a '6' to the screen, instead of the global

variable of 'i', which is 5 */

return 0;

}

That shows a decent example of local and global, but what about different scopes inside of
functions? (you'll learn more about functions later, for now, just focus on the "main" part.)

/* the main function */

int main(void)

{

/* this is the beginning of a 'block', you read about those above */

int i = 6; /* this is the first variable of this 'block', 'i' */

{

/* this is a new 'block', and because it's a different block, it has its

own scope */

/* this is also a variable called 'i', but in a different 'block',

because it's in a different 'block' then the old 'i', it doesn't

affect the old one! */

int i = 5;

printf("%d\n", i); /* prints a '5' onto the screen */

}

/* now we're back into the old block */

printf("%d\n", i); /* prints a '6' onto the screen */

return 0;

}

8.3 Basics of Using Functions

Functions are a big part of programming. A function is a special kind of block that
performs a well-defined task. If a function is well-designed, it can enable a programmer
to perform a task without knowing anything about how the function works. The act of
requesting a function to perform its task is called a function call. Many functions require
a caller to hand it certain pieces of data needed to perform its task; these are called ar-
guments. Many functions also return a value to the caller when they're finished; this is
called a return value (the return value in the above program is 0).

The things you need to know before calling a function are:

• What the function does
• The data type (discussed later) of the arguments and what they mean
• The data type of the return value and what it means

29

Preliminaries

All code other than global data definitions and declarations needs to be a part of a function.

Usually, you're free to call a function whatever you wish to. The only restriction is that
every executable program needs to have one, and only one, main function, which is where
the program begins executing.

We will discuss functions in more detail in a later chapter, C Programming/Procedures and
functions3.

8.4 The Standard Library

In 1983, when C was in the process of becoming standardized, the American National
Standards Institute4 (ANSI) formed a committee to establish a standard specification of C
known as "ANSI C". That standard specification created a basic set of functions common
to each implementation of C, which is referred to as the Standard Library5. The Standard
Library provides functions for tasks such as input/output, string manipulation, mathemat-
ics, files, and memory allocation. The Standard Library does not provide functions that are
dependent on specific hardware or operating systems, like graphics, sound, or networking.
In the "Hello, World", program, a Standard Library function is used printf which outputs
lines of text to the standard output6 stream.

pl:C/Podstawy7

3 Chapter 17 on page 97
4 http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute

5 http://en.wikipedia.org/wiki/C%20standard%20library

6 http://en.wikipedia.org/wiki/standard%20output

7 http://pl.wikibooks.org/wiki/C%2FPodstawy

30

http://en.wikipedia.org/wiki/American%20National%20Standards%20Institute
http://en.wikipedia.org/wiki/C%20standard%20library
http://en.wikipedia.org/wiki/standard%20output
http://pl.wikibooks.org/wiki/C%2FPodstawy

9 Compiling

Having covered the basic concepts of C programming, we can now briefly discuss the process
of compilation.

Like any programming language, C by itself is completely incomprehensible to a micropro-
cessor1. Its purpose is to provide an intuitive way for humans to provide instructions that
can be easily converted into machine code that is comprehensible to a microprocessor. The
compiler is what takes this code, and translates it into the machine code.

To those new to programming, this seems fairly simple. A naive compiler might read in
every source file, translate everything into machine code, and write out an executable. This
could work, but has two serious problems. First, for a large project, the computer may not
have enough memory to read all of the source code at once. Second, if you make a change
to a single source file, you would rather not have to recompile the entire application.

To deal with these problems, compilers break their job down into steps; for each source
file (each .c file), the compiler reads the file, reads the files it references with #include,
and translates it to machine code. The result of this is an "object file" (.o). Once every
object file is made, a "linker" collects all of the object files and writes the actual program.
This way, if you change one source file, only that file needs to be recompiled and then the
application needs to be re-linked.

Without going into the painful details, it can be beneficial to have a superficial understand-
ing of the compilation process.

9.1 Preprocessor

The preprocessor provides the ability for the inclusion of header files, macro expansions,
conditional compilation, and line control. Many times you will need to give special instruc-
tions to your compiler. This is done by inserting preprocessor directives2 into your code.
When you begin compiling your code, a special program called the preprocessor scans the
source code and performs simple substitution of tokenized strings for others according to
predefined rules. The preprocessor is not a part of the C language.

In C language, all preprocessor directives begin with the pound character (#). You can see
one preprocessor directive in the Hello world program3 introduced in A taste of C4:

Example:

1 http://en.wikipedia.org/wiki/microprocessor

2 http://en.wikipedia.org/wiki/Preprocessor%20directives

3 http://en.wikibooks.org/wiki/Hello%20world%20program

4 Chapter 5 on page 19

31

http://en.wikipedia.org/wiki/microprocessor
http://en.wikipedia.org/wiki/Preprocessor%20directives
http://en.wikibooks.org/wiki/Hello%20world%20program

Compiling

#include <stdio.h>

This directive causes the header to be included into your program. Other directives such
as #pragma control compiler settings and macros. The result of the preprocessing stage is a
text string. You can think of the preprocessor as a non-interactive text editor that prepares
your code for the compilation step. The language of preprocessor directives is agnostic to
the grammar of C, so the C preprocessor can also be used independently to process other
kinds of text files.

9.2 Syntax Checking

This step ensures that the code is valid and will sequence into an executable program.
Under most compilers, you may get messages or warnings indicating potential issues with
your program (such as a statement always being true or false, etc.)

When an error is detected in the program, the compiler will normally report the file name
and line that is preventing compilation.

9.3 Object Code

The compiler produces a machine code equivalent of the source code that can then be
linked into the final program. The code itself can't be executed yet, as it has to complete
the linking stage.

It's important to note after discussing the basics that compilation is a "one way street".
That is, compiling a C source file into machine code is easy, but "decompiling" (turning
machine code into the C source that creates it) is not. Decompilers for C do exist, but they
rarely create useful code.

9.4 Linking

Linking combines the separate object codes into one complete program by integrating li-
braries and the code and producing either an executable program5 or a library6. Linking is
performed by a linker, which is often part of a compiler.

Common errors during this stage are either missing functions, or duplicate functions.

5 http://en.wikipedia.org/wiki/Executable

6 http://en.wikipedia.org/wiki/Library%20%28computing%29

32

http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Library%20%28computing%29

Automation

9.5 Automation

For large C projects, many programmers choose to automate compilation, both in order
to reduce user interaction requirements and to speed up the process by only recompiling
modified files.

Most integrated development environments have some kind of project management, which
makes such automation very easy. On UNIX-like systems, make7 and Makefiles are often
used to accomplish the same.

de:C-Programmierung: Kompilierung8 es:Programación_en_C/Compilar_un_programa9

et:Programmeerimiskeel C/Kompileerimine10 fr:Programmation C-C%2B%2B/Modularité
et compilation11 it:C/Compilatore e precompilatore/Compilatore12 pt:Programar em
C/Utilizando um compilador13

7 http://en.wikibooks.org/wiki/make

8 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kompilierung

9 http://es.wikibooks.org/wiki/Programaci%C3%B3n_en_C%2FCompilar_un_programa

10 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKompileerimine

11
http://fr.wikibooks.org/wiki/Programmation%20C-C%252B%252B%2FModularit%C3%A9%20et%

20compilation
12 http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FCompilatore

13 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FUtilizando%20um%20compilador

33

http://en.wikibooks.org/wiki/make
http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kompilierung
http://es.wikibooks.org/wiki/Programaci%C3%B3n_en_C%2FCompilar_un_programa
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKompileerimine
http://fr.wikibooks.org/wiki/Programmation%20C-C%252B%252B%2FModularit%C3%A9%20et%20compilation
http://fr.wikibooks.org/wiki/Programmation%20C-C%252B%252B%2FModularit%C3%A9%20et%20compilation
http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FCompilatore
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FUtilizando%20um%20compilador

10 Structure and style

10.1 C Structure and Style

This is a basic introduction to good code style in the C Programming Language. It is
designed to provide information on how to effectively use indentation, comments, and other
elements that will make your C code more readable. It is not a tutorial on actually pro-
gramming in C.

As a beginning programmer, the point of creating structure in the programs' code might not
be clear, as the compiler doesn't care about the difference. However, as programs become
complex, chances are that writing the program has become a joint effort. (Or others might
want to see how it was accomplished.) Therefore, the code is no longer designed purely for
a compiler to read.

In the following sections, we will attempt to explain good programming practices that will
in turn make your programs clearer and more effective.

10.2 Introduction

In C, programs are composed of statements. These statements are terminated with a semi-
colon, and are collected in sections known as functions. By convention, a statement should
be kept on its own line, as shown in the example below:

#include <stdio.h>

int main(void)

{

printf("Hello, World!\n");

return 0;

}

The following block of code is essentially the same: while it contains exactly the same
code, and will compile and execute with the same result, the removal of spacing causes an
essential difference making it harder to read:

#include <stdio.h>

int main(void) {printf("Hello, World!\n");return 0;}

The simple use of indents and line breaks can greatly improve the readability of the code;
without making any impact whatsoever on how the code performs. By having readable
code, it is much easier to see where functions and procedures end, and which lines are part
of which loops and procedures.

35

Structure and style

This book is going to focus on the above piece of code, and how to improve it. Please note
that during the course of the tutorial, there will be many (apparently) redundant pieces
of code added. These are only added to provide examples of techniques that we will be
explaining, without breaking the overall flow of code that the program achieves.

10.3 Line Breaks and Indentation

The addition of white space inside your code is arguably the most important part of good
code structure. Effective use of white space can create a visual scale of how your code flows,
which can be very important when returning to your code when you want to maintain it.

10.3.1 Line Breaks

B Warning

Note that we have used line numbers here; they are not a part of the actual code.
They are only there for reference in this book.

With minimal line breaks, code is barely readable by humans, and may be hard to debug
or understand:

<source lang="c" line>

1. include <stdio.h>

int main(void){ int i=0; printf("Hello, World!"); for (i=0; i<1; i++){ printf("\n"); break; }
return 0; } </source>

Rather than putting everything on one line, it is much more readable to break up long lines
so that each statement and declaration goes on its own line. After inserting line breaks, the
code will look like this:

<source lang="c" line>

1. include <stdio.h>

int main(void) { int i=0; printf("Hello, World!"); for (i=0; i<1; i++) { printf("\n"); break;
} return 0; } </source>

10.3.2 Blank Lines

Blank lines should be used to offset the main components of your code. Use them

• After precompiler declarations.
• After new variables are declared.

Based on these two rules, there should now be two line breaks added.

• After line 1, because line 1 has a preprocessor directive

36

Line Breaks and Indentation

• After line 4, because line 4 contains a variable declaration

This will make the code much more readable than it was before:

The following lines of code have line breaks between functions, but without indentation.

<source lang="c" line>

1. include <stdio.h>

int main(void) { int i=0;

printf("Hello, World!"); for (i=0; i<1; i++) { printf("\n"); break; } return 0; }

</source>

But this still isn't as readable as it can be.

10.3.3 Indentation

Note:
Many text editors automatically indent appropriately when you hit the enter/return key.

Although adding simple line breaks between key blocks of code can make code easier to
read, it provides no information about the block structure of the program. Using the tab
key can be very helpful now: indentation visually separates paths of execution by moving
their starting points to a new column in the line. This simple practice will make it much
easier to read and understand code. Indentation follows a fairly simple rule:

• All code inside a new block should be indented by one tab1

2 more than the code in the previous path.

Based on the code from the previous section, there are two blocks requiring indentation:

• Lines 5 to 13
• Lines 10 and 11

<source lang="c" line>

1. include <stdio.h>

int main(void) {

1
2

Several programmers recommend "use spaces for indentation. Do not use tabs in your code. You should
set your editor to emit spaces when you hit the tab key." http://google-styleguide.googlecode.

com/svn/trunk/cppguide.xml http://www.jwz.org/doc/tabs-vs-spaces.html

Other programmers disagree. http://web.archive.org/20080118165124/diagrammes-modernes.

blogspot.com/2006/04/tab-versus-spaces.html http://www.derkarl.org/why_to_tabs.html

Regardless of whether you prefer spaces or tabs, make sure you keep it consistent with projects you are
working on, because mixing tabs and spaces can cause code to become unreadable.

37

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://www.jwz.org/doc/tabs-vs-spaces.html
http://web.archive.org/20080118165124/diagrammes-modernes.blogspot.com/2006/04/tab-versus-spaces.html
http://web.archive.org/20080118165124/diagrammes-modernes.blogspot.com/2006/04/tab-versus-spaces.html
http://www.derkarl.org/why_to_tabs.html

Structure and style

int i=0;

printf("Hello, World!");

for (i=0; i<1; i++)

{

printf("\n");

break;

}

return 0;

}

</source>

It is now fairly obvious as to which parts of the program fit inside which blocks. You can
tell which parts of the program the coder has intended to loop, and which ones he has not.
Although it might not be immediately noticeable, once many nested loops and paths get
added to the structure of the program, the use of indentation can be very important. This
indentation makes the structure of your program clear.

Indentation was originally one tab character, or the equivalent of 8 spaces. Research since
the original indent size has shown that indents between 2 to 4 characters are easier to read3,
resulting in such tab sizes being used as default in modern IDEs. However, an indent of 8
characters may still be in use for some systems4.

10.4 Comments

Comments in code can be useful for a variety of purposes. They provide the easiest way to
set off specific parts of code (and their purpose); as well as providing a visual "split" between
various parts of your code. Having good comments throughout your code will make it much
easier to remember what specific parts of your code do.

Comments in modern flavors of C (and many other languages) can come in two forms:

//Single Line Comments (added by C99 standard, famously known as c++ style of

comments)

and

/*Multi-Line

Comments*/ (only form of comments supported by C89 standard)

Note that Single line comments are a fairly recent addition to C, so some compilers may
not support them. A recent version of GCC5 will have no problems supporting them.

This section is going to focus on the various uses of each form of commentary.

3 http://www.oualline.com/vim-cook.html#drawing

4 [http://lxr.linux.no/#linux+v2.6.31/Documentation/CodingStyle Linux Kernel coding standard
5 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

38

http://www.oualline.com/vim-cook.html#drawing
http://lxr.linux.no/#linux+v2.6.31/Documentation/CodingStyle
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

Comments

10.4.1 Single-line Comments

Single-line comments are most useful for simple 'side' notes that explain what certain parts
of the code do. The best places to put these comments are next to variable declarations,
and next to pieces of code that may need explanation.

Based on our previous program, there are two good places to place comments

• Line 5, to explain what 'int i' is going to do
• Line 11, to explain why there is a 'break' keyword.

This will make our program look something like

#include <stdio.h>

int main(void)

{

int i=0; // loop variable.

printf("Hello, World!");

for (i=0; i<1; i++) {

printf("\n");

break; //Exits 'for' loop.

}

return 0;

}

10.4.2 Multi-line Comments

Note:
Single-line comments are a new feature, so many C programmers only use multi-line comments.

Multi-line comments are most useful for long explanations of code. They can be used as
copyright/licensing notices, and they can also be used to explain the purpose of a block of
code. This can be useful for two reasons: They make your functions easier to understand,
and they make it easier to spot errors in code. If you know what a block is supposed to do,
then it is much easier to find the piece of code that is responsible if an error occurs.

As an example, suppose we had a program that was designed to print "Hello, World! " a
certain number of lines, a specified number of times. There would be many for loops in this
program. For this example, we shall call the number of lines i, and the number of strings
per line as j.

A good example of a multi-line comment that describes 'for' loop is purpose would be:

/* For Loop (int i)

Loops the following procedure i times (for number of lines). Performs 'for'

loop j on each loop,

and prints a new line at end of each loop.

*/

39

Structure and style

This provides a good explanation of what is purpose is, whilst not going into detail
of what jdoes. By going into detail over what the specific path does (and not
ones inside it), it will be easier to troubleshoot the path.

Similarly, you should always include a multi-line comment before each function, to explain
the role, preconditions and postconditions of each function. Always leave the technical
details to the individual blocks inside your program - this makes it easier to troubleshoot.

A function descriptor should look something like:

/* Function : int hworld (int i,int j)

Input : int i (Number of lines), int j (Number of instances per line)

Output : 0 (on success)

Procedure: Prints "Hello, World!" j times, and a new line to standard output

over i lines.

*/

This system allows for an at-a-glance explanation of what the function should do. You can
then go into detail over how each aspect of the program is achieved later on in the program.

Finally, if you like to have aesthetically-pleasing source code, the multi-line comment system
allows for the easy addition of comment boxes. These make the comments stand out much
more than they would without otherwise. They look like this.

/***************************************

* This is a multi line comment

* That is nearly surrounded by a

* Cool, starry border!

***************************************/

Applied to our original program, we can now include a much more descriptive and readable
source code:

#include <stdio.h>

int main(void)

{

/****

**

* Function: int main(void)

* Input : none

* Output : Returns 0 on success

* Procedure: Prints "Hello, World!" and a new line to standard output then

exits.

***/

int i=0; //Temporary variable used for 'for' loop.

printf("Hello, World!");

/* FOR LOOP (int i)

Prints a new line to standard output, and exits */

for (i=0; i<1; i++)

{

printf("\n");

break; //Exits 'for' loop.

}

return 0;

}

40

Links

This will allow any outside users of the program an easy way to comprehend what the
code functions are and how they operate. It also inhibits uncertainty with other like-named
functions.

A few programmers add a column of stars on the right side of a block comment:

/***************************************

* This is a multi line comment *

* that is completely surrounded by a *

* cool, starry border! *

***************************************/

But most programmers don't put any stars on the right side of a block comment. They feel
that aligning the right side is a waste of time.

Comments written in source files can be used for documenting source code automatically
by using popular tools like Doxygen67

10.5 Links

• Aladdin's C coding guidelines8 - A more definitive C coding guideline.
• C/C++ Programming Styles9 GNU Coding styles & Linux Kernel Coding style
• C Programming Tutorial10 C Programming Tutorial

et:Programmeerimiskeel C/Stiil11

6 "Coding Conventions for C++ and Java" ˆ{http://www.macadamian.com/index.php?option=com_

content&task=view&id=34&Itemid=37} "all the block comments illustrated in this document have no
pretty stars on the right side of the block comment. This deliberate choice was made because aligning
those pretty stars is a large waste of time and discourages the maintenance of in-line comments.",

7 wiki:BigBlocksOfAsterisks ˆ{http://en.wikibooks.org/wiki/wiki%3ABigBlocksOfAsterisks}

, "Code craft" ˆ{http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=

programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=

NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=

8&ct=result} by Pete Goodliffe page 82, Falvotech "C Programming Style Guide" ˆ{http:

//www.falvotech.com/content/publications/conventions/c/} , Fedora Directory Server Coding
Style ˆ{http://directory.fedoraproject.org/wiki/Coding_Style}

8 http://www.cs.wisc.edu/~ghost/doc/AFPL/6.01/C-style.htm

9 http://www.mycplus.com/c.asp?ID=12

10 http://www.studiesinn.com/learn/Programming-Languages/C-Language.html

11 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FStiil

41

http://www.macadamian.com/index.php?option=com_content&task=view&id=34&Itemid=37
http://www.macadamian.com/index.php?option=com_content&task=view&id=34&Itemid=37
http://en.wikibooks.org/wiki/wiki%3ABigBlocksOfAsterisks
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://books.google.com/books?id=i4zCzpkrt4sC&pg=PA82&lpg=PA82&dq=programming+comment+block+waste+time+lining+up&source=bl&ots=TUpTMIHBnh&sig=NeZm23WPmvnw2aKMnIRUeQoHmJg&hl=en&ei=pri3SevGIYGyNMn9jd4K&sa=X&oi=book_result&resnum=8&ct=result
http://www.falvotech.com/content/publications/conventions/c/
http://www.falvotech.com/content/publications/conventions/c/
http://directory.fedoraproject.org/wiki/Coding_Style
http://www.cs.wisc.edu/~ghost/doc/AFPL/6.01/C-style.htm
http://www.mycplus.com/c.asp?ID=12
http://www.studiesinn.com/learn/Programming-Languages/C-Language.html
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FStiil

11 Error handling

C does not provide direct support for error handling (also known as exception handling).
By convention, the programmer is expected to prevent errors from occurring in the first
place, and test return values from functions. For example, -1 and NULL are used in several
functions such as socket() (Unix socket programming) or malloc() respectively to indicate
problems that the programmer should be aware about. In a worst case scenario where there
is an unavoidable error and no way to recover from it, a C programmer usually tries to log
the error and "gracefully" terminate the program.

There is an external variable called "errno", accessible by the programs after including <er-
rno.h> - that file comes from the definition of the possible errors that can occur in some Op-
erating Systems (e.g. Linux - in this case, the definition is in include/asm-generic/errno.h)
when programs ask for resources. Such variable indexes error descriptions accessible by the
function 'strerror(errno)'.

The following code tests the return value from the library function malloc to see if dynamic
memory allocation completed properly:

#include <stdio.h> /* fprintf */

#include <errno.h> /* errno */

#include <stdlib.h> /* malloc, free, exit */

#include <string.h> /* strerror */

extern int errno;

int main(void)

{

/* pointer to char, requesting dynamic allocation of 2,000,000,000

* storage elements (declared as an integer constant of type

* unsigned long int). (If your system has less than 2GB of memory

* available, then this call to malloc will fail)

*/

char *ptr = malloc(2000000000UL);

if (ptr == NULL){

puts("malloc failed");

puts(strerror(errno));

}

else

{

/* the rest of the code hereafter can assume that 2,000,000,000

* chars were successfully allocated...

*/

free(ptr);

}

exit(EXIT_SUCCESS); /* exiting program */

}

43

Error handling

The code snippet above shows the use of the return value of the library function malloc to
check for errors. Many library functions have return values that flag errors, and thus should
be checked by the astute programmer. In the snippet above, a NULL pointer returned
from malloc signals an error in allocation, so the program exits. In more complicated
implementations, the program might try to handle the error and try to recover from the
failed memory allocation.

11.1 Preventing divide by zero errors

A common pitfall made by C programmers is not checking if a divisor is zero before a
division command. The following code will produce a runtime error and in most cases, exit.

int dividend = 50;

int divisor = 0;

int quotient;

quotient = (dividend/divisor); /* This will produce a runtime error! */

For reasons beyond the scope of this document, you must check or make sure that a divisor
is never zero. Alternatively, for *nix processes, you can stop the OS from terminating your
process by blocking the SIGFPE signal.

The code below fixes this by checking if the divisor is zero before dividing.

#include <stdio.h> /* for fprintf and stderr */

#include <stdlib.h> /* for exit */

int main(void)

{

int dividend = 50;

int divisor = 0;

int quotient;

if (divisor == 0) {

/* Example handling of this error. Writing a message to stderr, and

* exiting with failure.

*/

fprintf(stderr, "Division by zero! Aborting...\n");

exit(EXIT_FAILURE); /* indicate failure.*/

}

quotient = dividend / divisor;

exit(EXIT_SUCCESS); /* indicate success.*/

}

11.2 Signals

In some cases, the environment may respond to a programming error in C by raising a
signal. Signals are events raised by the host environment or operating system to indicate
that a specific error or critical event has occurred (e.g. a division by zero, interrupt, and
so on.) However, these signals are not meant to be used as a means of error catching; they
usually indicate a critical event that will interfere with normal program flow.

44

setjmp

To handle signals, a program needs to use the signal.h header file. A signal handler will
need to be defined, and the signal() function is then called to allow the given signal to be
handled. Some signals that are raised to an exception within your code (e.g. a division by
zero) are unlikely to allow your program to recover. These signal handlers will be required to
instead ensure that some resources are properly cleaned up before the program terminates.

This example creates a signal handler and raises the signal:

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

static void catch_function(int signal) {

puts("Interactive attention signal caught.");

}

int main(void) {

if (signal(SIGINT, catch_function) == SIG_ERR) {

fputs("An error occurred while setting a signal handler.\n", stderr);

return EXIT_FAILURE;

}

puts("Raising the interactive attention signal.");

if (raise(SIGINT) != 0) {

fputs("Error raising the signal.\n", stderr);

return EXIT_FAILURE;

}

puts("Exiting.");

return 0;

}

11.3 setjmp

The setjmp1 function can be used to emulate the exception handling feature of other pro-
gramming languages. The first call to setjmp provides a reference point to returning to a
given function, and is valid as long as the function containing setjmp() doesn't return or
exit. A call to longjmp causes the execution to return to the point of the associated setjmp
call.

#include <stdio.h>

#include <setjmp.h>

jmp_buf test1;

void tryjump()

{

longjmp(test1, 3);

}

int main (void)

{

if (setjmp(test1)==0) {

printf ("setjmp() returned 0.");

tryjump();

} else {

printf ("setjmp returned from a longjmp function call.");

1 http://en.wikibooks.org/wiki/C%20Programming%2FCoroutines%23setjmp

45

http://en.wikibooks.org/wiki/C%20Programming%2FCoroutines%23setjmp

Error handling

}

}

The values of non-volatile variables may be corrupted when setjmp returns from a longjmp
call.

While setjmp() and longjmp() may be used for error handling, it is generally preferred to
use the return value of a function to indicate an error, if possible.

46

12 Variables

Like most programming languages, C is able to use and process named variables and their
contents. Variables are simply names used to refer to some location in memory – a location
that holds a value with which we are working.

It may help to think of variables as a placeholder for a value. You can think of a variable
as being equivalent to its assigned value. So, if you have a variable i that is initialized (set
equal) to 4, then it follows that i+1 will equal 5.

Since C is a relatively low-level programming language, before a C program can utilize
memory to store a variable it must claim the memory needed to store the values for a
variable. This is done by declaring variables. Declaring variables is the way in which a
C program shows the number of variables it needs, what they are going to be named, and
how much memory they will need.

Within the C programming language, when managing and working with variables, it is
important to know the type of variables and the size of these types. Since C is a fairly
low-level programming language, these aspects of its working can be hardware specific –
that is, how the language is made to work on one type of machine can be different from
how it is made to work on another.

All variables in C are typed. That is, every variable declared must be assigned as a certain
type of variable.

12.1 Declaring, Initializing, and Assigning Variables

Here is an example of declaring an integer, which we've called some_number. (Note the
semicolon at the end of the line; that is how your compiler separates one program statement
from another.)

int some_number;

This statement means we're declaring some space for a variable called some_number, which
will be used to store integer data. Note that we must specify the type of data that a variable
will store. There are specific keywords to do this – we'll look at them in the next section.

Multiple variables can be declared with one statement, like this:

int anumber, anothernumber, yetanothernumber;

We can also declare and assign some content to a variable at the same time.

int some_number=3;

47

Variables

This is called initialization.

In early versions of C, variables had to be declared at the beginning of a block. In C99
it is allowed to mix declarations and statements arbitrarily – but doing so is not usual,
because it is rarely necessary, some compilers still don’t support C99 (portability), and it
may, because it is uncommon yet, irritate fellow programmers (maintainability).

After declaring variables, you can assign a value to a variable later on using a statement
like this:

some_number=3;

You can also assign a variable the value of another variable, like so:

anumber = anothernumber;

Or assign multiple variables the same value with one statement:

anumber = anothernumber = yetanothernumber = 3;

This is because the assignment x = y returns the value of the assignment. x = y = z is
really shorthand for x = (y = z).

12.1.1 Naming Variables

Variable names in C are made up of letters (upper and lower case) and digits. The under-
score character ("_") is also permitted. Names must not begin with a digit. Unlike some
languages (such as Perl1 and some BASIC2 dialects), C does not use any special prefix
characters on variable names.

Some examples of valid (but not very descriptive) C variable names:

foo

Bar

BAZ

foo_bar

_foo42

_

QuUx

Some examples of invalid C variable names:

2foo (must not begin with a digit)

my foo (spaces not allowed in names)

$foo ($ not allowed -- only letters, digits, and _)

while (language keywords cannot be used as names)

As the last example suggests, certain words are reserved as keywords in the language, and
these cannot be used as variable names.

1 http://en.wikipedia.org/wiki/Perl

2 http://en.wikipedia.org/wiki/BASIC%20programming%20language

48

http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/BASIC%20programming%20language

Literals

In addition there are certain sets of names that, while not language keywords, are reserved
for one reason or another. For example, a C compiler might use certain names "behind the
scenes", and this might cause problems for a program that attempts to use them. Also,
some names are reserved for possible future use in the C standard library. The rules for
determining exactly what names are reserved (and in what contexts they are reserved) are
too complicated to describe here, and as a beginner you don't need to worry about them
much anyway. For now, just avoid using names that begin with an underscore character.

The naming rules for C variables also apply to naming other language constructs such as
function names, struct tags, and macros, all of which will be covered later.

12.2 Literals

Anytime within a program in which you specify a value explicitly instead of referring to a
variable or some other form of data, that value is referred to as a literal. In the initialization
example above, 3 is a literal. Literals can either take a form defined by their type (more on
that soon), or one can use hexadecimal (hex) notation to directly insert data into a variable
regardless of its type. Hex numbers are always preceded with 0x. For now, though, you
probably shouldn't be too concerned with hex.

12.3 The Four Basic Data Types

In Standard C there are four basic data types. They are int, char, float, and double.

We will briefly describe them here, then go into more detail in C Programming/Types3.

12.3.1 The int type

The int type stores integers in the form of "whole numbers". An integer is typically the
size of one machine word, which on most modern home PCs is 32 bits (4 octets). Examples
of literals are whole numbers (integers) such as 1,2,3, 10, 100... When int is 32 bits (4
octets), it can store any whole number (integer) between -2147483648 and 2147483647. A
32 bit word (number) has the possibility of representing any one number out of 4294967296
possibilities (2 to the power of 32).

If you want to declare a new int variable, use the int keyword. For example:

int numberOfStudents, i, j=5;

In this declaration we declare 3 variables, numberOfStudents, i and j, j here is assigned the
literal 5.

3 http://en.wikibooks.org/wiki/C%20Programming%2FTypes

49

http://en.wikibooks.org/wiki/C%20Programming%2FTypes

Variables

12.3.2 The char type

The char type is capable of holding any member of the execution character set. It stores
the same kind of data as an int (i.e. integers), but typically has a size of one byte. The
size of a byte is specified by the macro CHAR_BIT which specifies the number of bits in a
char (byte). In standard C it never can be less than 8 bits. A variable of type char is most
often used to store character data, hence its name. Most implementations use the ASCII4

character set as the execution character set, but it's best not to know or care about that
unless the actual values are important.

Examples of character literals are 'a', 'b', '1', etc., as well as some special characters such
as '\0' (the null character) and '\n' (newline, recall "Hello, World"). Note that the char

value must be enclosed within single quotations.

When we initialize a character variable, we can do it two ways. One is preferred, the other
way is bad programming practice.

The first way is to write

char letter1 = 'a';

This is good programming practice in that it allows a person reading your code to understand
that letter1 is being initialized with the letter 'a' to start off with.

The second way, which should not be used when you are coding letter characters, is to write

char letter2 = 97; /* in ASCII, 97 = 'a' */

This is considered by some to be extremely bad practice, if we are using it to store a
character, not a small number, in that if someone reads your code, most readers are forced
to look up what character corresponds with the number 97 in the encoding scheme. In the
end, letter1 and letter2 store both the same thing – the letter 'a', but the first method
is clearer, easier to debug, and much more straightforward.

One important thing to mention is that characters for numerals are represented differently
from their corresponding number, i.e. '1' is not equal to 1. In short, any single entry that
is enclosed within 'single quotes'.

There is one more kind of literal that needs to be explained in connection with chars: the
string literal. A string is a series of characters, usually intended to be displayed. They
are surrounded by double quotations (" ", not ' '). An example of a string literal is the
"Hello, World!\n" in the "Hello, World" example.

The string literal is assigned to a character array, arrays are described later. Example:

const char MY_CONSTANT_PEDANTIC_ITCH[] = "learn the usage context.\n";

printf("Square brackets after a variable name means it is a pointer to a string

of memory blocks the size of the type of the array element.\n");

4 http://en.wikipedia.org/wiki/ASCII

50

http://en.wikipedia.org/wiki/ASCII

sizeof

12.3.3 The float type

float is short for floating point. It stores real numbers also, but is only one machine
word in size. Therefore, it is used when less precision than a double provides is required.
float literals must be suffixed with F or f, otherwise they will be interpreted as doubles.
Examples are: 3.1415926f, 4.0f, 6.022e+23f. float variables can be declared using the
float keyword.

12.3.4 The double type

The double and float types are very similar. The float type allows you to store single-
precision floating point numbers, while the double keyword allows you to store double-
precision floating point numbers – real numbers, in other words, both integer and non-
integer values. Its size is typically two machine words, or 8 bytes on most machines. Ex-
amples of double literals are 3.1415926535897932, 4.0, 6.022e+23 (scientific notation5). If
you use 4 instead of 4.0, the 4 will be interpreted as an int.

The distinction between floats and doubles was made because of the differing sizes of the
two types. When C was first used, space was at a minimum and so the judicious use
of a float instead of a double saved some memory. Nowadays, with memory more freely
available, you do not really need to conserve memory like this – it may be better to use
doubles consistently. Indeed, some C implementations use doubles instead of floats when
you declare a float variable.

If you want to use a double variable, use the double keyword.

12.4 sizeof

If you have any doubts as to the amount of memory actually used by any variable (and
this goes for types we'll discuss later, also), you can use the sizeof operator to find out for
sure. (For completeness, it is important to mention that sizeof is a unary operator6, not
a function.) Its syntax is:

sizeof object

sizeof(type)

The two expressions above return the size of the object and type specified, in bytes. The
return type is size_t (defined in the header <stddef.h>) which is an unsigned value.
Here's an example usage:

size_t size;

int i;

size = sizeof(i);

size will be set to 4, assuming CHAR_BIT is defined as 8, and an integer is 32 bits wide.
The value of sizeof's result is the number of bytes.

5 http://en.wikipedia.org/wiki/Scientific%20notation

6 http://en.wikipedia.org/wiki/Unary%20operation

51

http://en.wikipedia.org/wiki/Scientific%20notation
http://en.wikipedia.org/wiki/Unary%20operation

Variables

Note that when sizeof is applied to a char, the result is 1; that is:

sizeof(char)

always returns 1.

12.5 Data type modifiers

One can alter the data storage of any data type by preceding it with certain modifiers.

long and short are modifiers that make it possible for a data type to use either more or
less memory. The int keyword need not follow the short and long keywords. This is
most commonly the case. A short can be used where the values fall within a lesser range
than that of an int, typically -32768 to 32767. A long can be used to contain an extended
range of values. It is not guaranteed that a short uses less memory than an int, nor is
it guaranteed that a long takes up more memory than an int. It is only guaranteed that
sizeof(short) <= sizeof(int) <= sizeof(long). Typically a short is 2 bytes, an int is 4
bytes, and a long either 4 or 8 bytes. Modern C compilers also provide long long which
is typically an 8 byte integer.

In all of the types described above, one bit is used to indicate the sign (positive or negative)
of a value. If you decide that a variable will never hold a negative value, you may use the
unsigned modifier to use that one bit for storing other data, effectively doubling the range
of values while mandating that those values be positive. The unsigned specifier also may
be used without a trailing int, in which case the size defaults to that of an int. There is
also a signed modifier which is the opposite, but it is not necessary, except for certain uses
of char, and seldom used since all types (except char) are signed by default.

To use a modifier, just declare a variable with the data type and relevant modifiers:

unsigned short int usi; /* fully qualified -- unsigned short int */

short si; /* short int */

unsigned long uli; /* unsigned long int */

12.6 const qualifier

When the const qualifier is used, the declared variable must be initialized at declaration.
It is then not allowed to be changed.

While the idea of a variable that never changes may not seem useful, there are good reasons
to use const. For one thing, many compilers can perform some small optimizations on
data when it knows that data will never change. For example, if you need the value of π in
your calculations, you can declare a const variable of pi, so a program or another function
written by someone else cannot change the value of pi.

Note that a Standard conforming compiler must issue a warning if an attempt is made
to change a const variable - but after doing so the compiler is free to ignore the const

qualifier.

52

Magic numbers

12.7 Magic numbers

When you write C programs, you may be tempted to write code that will depend on
certain numbers. For example, you may be writing a program for a grocery store. This
complex program has thousands upon thousands of lines of code. The programmer decides
to represent the cost of a can of corn, currently 99 cents, as a literal throughout the code.
Now, assume the cost of a can of corn changes to 89 cents. The programmer must now
go in and manually change each entry of 99 cents to 89. While this is not that big of
a problem, considering the "global find-replace" function of many text editors, consider
another problem: the cost of a can of green beans is also initially 99 cents. To reliably
change the price, you have to look at every occurrence of the number 99.

C possesses certain functionality to avoid this. This functionality is approximately equiva-
lent, though one method can be useful in one circumstance, over another.

12.7.1 Using the const keyword

The const keyword helps eradicate magic numbers. By declaring a variable const corn

at the beginning of a block, a programmer can simply change that const and not have to
worry about setting the value elsewhere.

There is also another method for avoiding magic numbers. It is much more flexible than
const, and also much more problematic in many ways. It also involves the preprocessor,
as opposed to the compiler. Behold...

12.7.2 #define

When you write programs, you can create what is known as a macro, so when the computer
is reading your code, it will replace all instances of a word with the specified expression.

Here's an example. If you write

#define PRICE_OF_CORN 0.99

when you want to, for example, print the price of corn, you use the word PRICE_OF_CORN

instead of the number 0.99 – the preprocessor will replace all instances of PRICE_OF_CORN

with 0.99, which the compiler will interpret as the literal double 0.99. The preprocessor
performs substitution, that is, PRICE_OF_CORN is replaced by 0.99 so this means there is no
need for a semicolon.

It is important to note that #define has basically the same functionality as the "find-and-
replace" function in a lot of text editors/word processors.

For some purposes, #define can be harmfully used, and it is usually preferable to use const

if #define is unnecessary. It is possible, for instance, to #define, say, a macro DOG as the
number 3, but if you try to print the macro, thinking that DOG represents a string that you
can show on the screen, the program will have an error. #define also has no regard for
type. It disregards the structure of your program, replacing the text everywhere (in effect,

53

Variables

disregarding scope), which could be advantageous in some circumstances, but can be the
source of problematic bugs.

You will see further instances of the #define directive later in the text. It is good convention
to write #defined words in all capitals, so a programmer will know that this is not a variable
that you have declared but a #defined macro. It is not necessary to end a preprocessor
directive such as #define with a semicolon; in fact, some compilers may warn you about
unnecessary tokens in your code if you do.

12.8 Scope

In the Basic Concepts section, the concept of scope was introduced. It is important to
revisit the distinction between local types and global types, and how to declare variables of
each. To declare a local variable, you place the declaration at the beginning (i.e. before any
non-declarative statements) of the block to which the variable is intended to be local. To
declare a global variable, declare the variable outside of any block. If a variable is global,
it can be read, and written, from anywhere in your program.

Global variables are not considered good programming practice, and should be avoided
whenever possible. They inhibit code readability, create naming conflicts, waste memory,
and can create difficult-to-trace bugs. Excessive usage of globals is usually a sign of laziness
and/or poor design. However, if there is a situation where local variables may create more
obtuse and unreadable code, there's no shame in using globals.

12.9 Other Modifiers

Included here, for completeness, are more of the modifiers that standard C provides. For
the beginning programmer, static and extern may be useful. volatile is more of interest to
advanced programmers. register and auto are largely deprecated and are generally not of
interest to either beginning or advanced programmers.

12.9.1 static

static is sometimes a useful keyword. It is a common misbelief that the only purpose is
to make a variable stay in memory.

When you declare a function or global variable as static it will become internal. You
cannot access the function or variable through the extern (see below) keyword from other
files in your project.

When you declare a local variable as static, it is created just like any other variable.
However, when the variable goes out of scope (i.e. the block it was local to is finished)
the variable stays in memory, retaining its value. The variable stays in memory until the
program ends. While this behaviour resembles that of global variables, static variables still

54

Other Modifiers

obey scope rules and therefore cannot be accessed outside of their scope.

Variables declared static are initialized to zero (or for pointers, NULL) by default.

You can use static in (at least) two different ways. Consider this code, and imagine it is in
a file called jfile.c:

#include <stdio.h>

static int j = 0;

void up(void)

{

/* k is set to 0 when the program starts. The line is then "ignored"

* for the rest of the program (i.e. k is not set to 0 every time up()

* is called)

*/

static int k = 0;

j++;

k++;

printf("up() called. k= %2d, j= %2d\n", k , j);

}

void down(void)

{

static int k = 0;

j--;

k--;

printf("down() called. k= %2d, j= %2d\n", k , j);

}

int main(void)

{

int i;

/* call the up function 3 times, then the down function 2 times */

for (i= 0; i < 3; i++)

up();

for (i= 0; i < 2; i++)

down();

return 0;

}

The j var is accessible by both up and down and retains its value. The k vars also retain
their value, but they are two different variables, one in each of their scopes. Static vars are a
good way to implement encapsulation, a term from the object-oriented way of thinking that
effectively means not allowing changes to be made to a variable except through function
calls.

Running the program above will produce the following output:

up() called. k= 1, j= 1

up() called. k= 2, j= 2

up() called. k= 3, j= 3

down() called. k= -1, j= 2

down() called. k= -2, j= 1

Features of static variables :

55

Variables

1. Keyword used - static

2. Storage - Memory

3. Default value - Zero

4. Scope - Local to the block in which it is declared

5. Lifetime - Value persists between different function calls

6. Keyword optionality - Mandatory to use the keyword

12.9.2 extern

extern is used when a file needs to access a variable in another file that it may not have
#included directly. Therefore, extern does not actually carve out space for a new variable,
it just provides the compiler with sufficient information to access the remote variable.

Features of external variable :

1. Keyword used - extern

2. Storage - Memory

3. Default value - Zero

4. Scope - Global (all over the program)

5. Lifetime - Value persists till the program's execution comes

to an end

6. Keyword optionality - Optional if declared outside all the functions

12.9.3 volatile

volatile is a special type of modifier which informs the compiler that the value of the
variable may be changed by external entities other than the program itself. This is necessary
for certain programs compiled with optimizations – if a variable were not defined volatile

then the compiler may assume that certain operations involving the variable are safe to
optimize away when in fact they aren't. volatile is particularly relevant when working with
embedded systems (where a program may not have complete control of a variable) and
multi-threaded applications.

12.9.4 auto

auto is a modifier which specifies an "automatic" variable that is automatically created when
in scope and destroyed when out of scope. If you think this sounds like pretty much what
you've been doing all along when you declare a variable, you're right: all declared items
within a block are implicitly "automatic". For this reason, the auto keyword is more like
the answer to a trivia question than a useful modifier, and there are lots of very competent
programmers that are unaware of its existence.

Features of automatic variables :

1. Keyword used - auto

2. Storage - Memory

3. Default value - Garbage value (random value)

56

Other Modifiers

4. Scope - Local to the block in which it is defined

5. Lifetime - Value persists while the control remains within

the block

6. Keyword optionality - Optional

12.9.5 register

register is a hint to the compiler to attempt to optimize the storage of the given variable
by storing it in a register of the computer's CPU when the program is run. Most optimizing
compilers do this anyway, so use of this keyword is often unnecessary. In fact, ANSI C states
that a compiler can ignore this keyword if it so desires – and many do. Microsoft Visual
C++ is an example of an implementation that completely ignores the register keyword.

Features of register variables :

1. Keyword used - register

2. Storage - CPU registers (values can be retrieved faster than

from memory)

3. Default value - Garbage value

4. Scope - Local to the block in which it is defined

5. Lifetime - Value persists while the control remains within

the block

6. Keyword optionality - Mandatory to use the keyword

12.9.6 Concepts

• Variables7

• Types8

• Data Structures9

• Arrays10

12.9.7 In this section

• C variables11

• C types12

• C arrays13

7 http://en.wikibooks.org/wiki/Computer%20Programming%2FVariables

8 http://en.wikibooks.org/wiki/Computer%20Programming%2FTypes

9 http://en.wikibooks.org/wiki/Data%20Structures

10 http://en.wikibooks.org/wiki/Data%20Structures%2FArrays

11 Chapter 12 on page 47
12 http://en.wikibooks.org/wiki/C%20Programming%2FTypes

13 Chapter 24 on page 181

57

http://en.wikibooks.org/wiki/Computer%20Programming%2FVariables
http://en.wikibooks.org/wiki/Computer%20Programming%2FTypes
http://en.wikibooks.org/wiki/Data%20Structures
http://en.wikibooks.org/wiki/Data%20Structures%2FArrays
http://en.wikibooks.org/wiki/C%20Programming%2FTypes

Variables

et:Programmeerimiskeel C/Muutujad14 it:C/Variabili, operatori e costanti/Variabili15

pl:C/Zmienne16 fi:C/Muuttujat17

14 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMuutujad

15 http://it.wikibooks.org/wiki/C%2FVariabili%2C%20operatori%20e%20costanti%2FVariabili

16 http://pl.wikibooks.org/wiki/C%2FZmienne

17 http://fi.wikibooks.org/wiki/C%2FMuuttujat

58

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMuutujad
http://it.wikibooks.org/wiki/C%2FVariabili%2C%20operatori%20e%20costanti%2FVariabili
http://pl.wikibooks.org/wiki/C%2FZmienne
http://fi.wikibooks.org/wiki/C%2FMuuttujat

13 Simple Input and Output

When you take time to consider it, a computer would be pretty useless without some way
to talk to the people who use it. Just like we need information in order to accomplish tasks,
so do computers. And just as we supply information to others so that they can do tasks, so
do computers.

These supplies and returns of information to a computer are called input and output.
'Input' is information supplied to a computer or program. 'Output' is information provided
by a computer or program. Frequently, computer programmers will lump the discussion in
the more general term input/output or simply, I/O.

In C, there are many different ways for a program to communicate with the user. Amazingly,
the most simple methods usually taught to beginning programmers may also be the most
powerful. In the "Hello, World" example1 at the beginning of this text, we were introduced
to a Standard Library file stdio.h, and one of its functions, printf(). Here we discuss more
of the functions that stdio.h gives us.

13.1 Output using printf()

Recall from the beginning of this text the demonstration program duplicated below:

#include <stdio.h>

int main(void)

{

printf("Hello, world!\n");

return 0;

}

If you compile and run this program, you will see the sentence below show up on your
screen:

Hello, world!

This amazing accomplishment was achieved by using the function printf(). A function is
like a "black box" that does something for you without exposing the internals inside. We
can write functions ourselves in C, but we will cover that later.

You have seen that to use printf() one puts text, surrounded by quotes, in between the
parentheses. We call the text surrounded by quotes a literal string (or just a string), and
we call that string an argument to printf.

1 http://en.wikibooks.org/wiki/Programming%3AC%23A%20taste%20of%20C

59

http://en.wikibooks.org/wiki/Programming%3AC%23A%20taste%20of%20C

Simple Input and Output

As a note of explanation, it is sometimes convenient to include the open and closing paren-
theses after a function name to remind us that it is, indeed, a function. However usually
when the name of the function we are talking about is understood, it is not necessary.

As you can see in the example above, using printf() can be as simple as typing in some
text, surrounded by double quotes (note that these are double quotes and not two single
quotes). So, for example, you can print any string by placing it as an argument to the
printf() function:

printf("This sentence will print out exactly as you see it...");

And once it is contained in a proper main() function, it will show:

This sentence will print out exactly as you see it...

13.1.1 Printing numbers and escape sequences

Placeholder codes

The printf function is a powerful function, and is probably the most-used function in C
programs.

For example, let us look at a problem. Say we don't know what 19 + 31 is. Let's use C to
get the answer.

We start writing

#include "stdio.h" // this is important, since printf

// can't be used without this line

int main(void)

{

printf("19+31 is");

but here we are stuck! printf only prints strings! Thankfully, printf has methods for
printing numbers. What we do is put a placeholder format code in the string. We write:

printf("19+31 is %d", 19+31);

The placeholder %d literally "holds the place" for the actual number that is the result of
adding 19 to 31.

These placeholders are called format specifiers. Many other format specifiers work with
printf. If we have a floating-point number, we can use %f to print out a floating-point
number, decimal point and all. Other format specifiers are:

• %d - int (same as %i)
• %ld - long int (same as %li)
• %f - float

60

Other output methods

• %lf - double
• %c - char
• %s - string
• %x - hexadecimal

Tabs and newlines

What if, we want to achieve some output that will look like:

1905

312 +

printf will not put line breaks in at the end of each statement: we must do this ourselves.
But how?

What we can do is use the newline escape character. An escape character is a special
character that we can write but will do something special onscreen, such as make a beep,
write a tab, and so on. To write a newline we write \n. All escape characters start with a
backslash.

So to achieve the output above, we write

printf(" 1905\n312 +\n-----\n");

or to be a bit more clear, we can break this long printf statement over several lines. So our
program will be

#include <stdio.h>

int main(void)

{

printf(" 1905\n");

printf("312 +\n");

printf("-----\n");

printf("%d", 1905+312);

return 0;

}

There are other escape characters we can use. Another common one is to use \t to write a
tab. You can use \a to ring the computer's bell, but you should not use this very much in
your programs, as excessive use of sound is not very friendly to the user.

13.2 Other output methods

13.2.1 puts()

The puts() function is a very simple way to send a string to the screen when you have no
placeholders to be concerned about. It works very much like the printf() function we saw

61

Simple Input and Output

in the "Hello, World!" example:

puts("Print this string.");

will print to the screen:

Print this string.

followed by the newline character (as discussed above). (The puts function appends a
newline character to its output.)

#include<stdio.h>

f(int i,int j,int k)

{

printf("%d%d%d",i,j,k);

}

main()

{

int x=1,y=2,z=3;

f(x+y,y=x+z,z=x+y);

}

13.3 Input using scanf()

The scanf() function is the input method equivalent to the printf() output function - simple
yet powerful. In its simplest invocation, the scanf format string holds a single placeholder
representing the type of value that will be entered by the user. These placeholders are
exactly the same as the printf() function - %d for ints, %f for floats, and %lf for doubles.

There is, however, one variation to scanf() as compared to printf(). The scanf() function
requires the memory address of the variable to which you want to save the input value.
While pointers are possible here, this is a concept that won't be approached until later in
the text. Instead, the simple technique is to use the address-of operator, &. For now it
may be best to consider this "magic" before we discuss pointers.

A typical application might be like this:

#include "stdio.h"

int main(void)

{

int a;

printf("Please input an integer value: ");

scanf("%d", &a);

printf("You entered: %d\n", a);

return 0;

}

If you were to describe the effect of the scanf() function call above, it might read as: "Read
in an integer from the user and store it at the address of variable a ".

62

Links

If you are trying to input a string using scanf, you should not include the & operator. The
code below will not compile.

scanf("%s", &a);

The correct usage would be:

scanf("%s", a);

This is because, whenever you use a format specifier for a string (%s), the variable that you
use to store the value will be an array and, the array names (in this case - a) themselves
point out to their base address and hence, the address of operator is not required.

(Although, this is vulnerable to Buffer overflow2. fgets() is preferred to scanf()).

Note on inputs: When data is typed at a keyboard, the information does not go straight
to the program that is running. It is first stored in what is known as a buffer - a small
amount of memory reserved for the input source. Sometimes there will be data left in the
buffer when the program wants to read from the input source, and the scanf() function
will read this data instead of waiting for the user to type something. Some may suggest
you use the function fflush(stdin), which may work as desired on some computers, but isn't
considered good practice, as you will see later. Doing this has the downfall that if you
take your code to a different computer with a different compiler, your code may not work
properly.

13.4 Links

Back to contents: Beginning C3

et:Programmeerimiskeel C/IO4 pl:C/Podstawowe procedury wejścia i wyjścia5

pt:Programar em C/Entrada e saída simples6 7

2 http://en.wikipedia.org/wiki/Buffer%20overflow

3 http://en.wikibooks.org/wiki/C%20Programming%23Beginning%20C

4 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FIO

5
http://pl.wikibooks.org/wiki/C%2FPodstawowe%20procedury%20wej%C5%9Bcia%20i%20wyj%C5%

9Bcia
6 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FEntrada%20e%20sa%C3%ADda%20simples

7 http://en.wikibooks.org/wiki/Category%3AC%20Programming

63

http://en.wikipedia.org/wiki/Buffer%20overflow
http://en.wikibooks.org/wiki/C%20Programming%23Beginning%20C
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FIO
http://pl.wikibooks.org/wiki/C%2FPodstawowe%20procedury%20wej%C5%9Bcia%20i%20wyj%C5%9Bcia
http://pl.wikibooks.org/wiki/C%2FPodstawowe%20procedury%20wej%C5%9Bcia%20i%20wyj%C5%9Bcia
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FEntrada%20e%20sa%C3%ADda%20simples
http://en.wikibooks.org/wiki/Category%3AC%20Programming

14 Simple math

14.1 Operators and Assignments

C has a wide range of operators that make simple math easy to handle. The list of operators
grouped into precedence levels is as follows:

14.1.1 Primary expressions

An identifier is a primary expression, provided that it has been declared as designating an
object (in which case it is an lvalue [a value that can be used as the left side of an assignment
expression]) or a function (in which case it is a function designator).

A constant is a primary expression. Its type depends on its form and value.

A string literal is a primary expression.

A parenthesized expression is a primary expression. Its type and value are those of the
unparenthesized expression.

14.1.2 Postfix operators

First, a primary expression is also a postfix expression. The following expressions are also
postfix expressions:

A postfix expression followed by a left square bracket ([), an expression, and a right square
bracket (]) constitutes an invocation of the array subscript operator. One of the expressions
shall have type "pointer to object type" and the other shall have an integer type; the result
type is type. Successive array subscript operators designate an element of a multidimensional
array.

A postfix expression followed by parentheses or an optional parenthesized argument list
indicates an invocation of the function call operator.

A postfix expression followed by a dot (.) followed by an identifier selects a member from a
structure or union; a postfix expression followed by an arrow (->) followed by an identifier
selects a member from a structure or union who is pointed to by the pointer on the left-hand
side of the expression.

A postfix expression followed by the increment or decrement operators (++ or --) indicates
that the variable is to be incremented or decremented as a side effect. The value of the
expression is the value of the postfix expression before the increment or decrement.

65

Simple math

14.1.3 Unary expressions

First, a unary expression is a postfix expression. The following expressions are all postfix
expressions:

The increment or decrement operators followed by a unary expression is a unary expression.
The value of the expression is the value of the unary expression after the increment or
decrement.

The following operators followed by a cast expression are unary expressions:

Operator Meaning

======== =======

& Address-of; value is the location of the operand

* Contents-of; value is what is stored at the location

- Negation

+ Value-of operator

! Logical negation ((!E) is equivalent to (0==E))

˜ Bit-wise complement

The keyword sizeof followed by a unary expression is a unary expression. The value is the
size of the type of the expression in bytes. The expression is not evaluated.

The keyword sizeof followed by a parenthesized type name is a unary expression. The
value is the size of the type in bytes.

14.1.4 Cast operators

A cast expression is a unary expression.

A parenthesized type name followed by a cast expression is a cast expression. The paren-
thesized type name has the effect of forcing the cast expression into the type specified by
the type name in parentheses. For arithmetic types, this either does not change the value
of the expression, or truncates the value of the expression if the expression is an integer and
the new type is smaller than the previous type.

An example of casting a float as an int:

float pi = 3.141592;

int truncated_pi = (int)pi; // truncated_pi == 3

An example of casting a char as an int:

char my_char = 'A';

int my_int = (int)my_char; // my_int == 65, which is the ASCII value of 'A'

14.1.5 Multiplicative and additive operators

In C, simple math is very easy to handle. The following operators exist: + (addition),
- (subtraction), * (multiplication), / (division), and % (modulus); You likely know all of
them from your math classes - except, perhaps, modulus. It returns the remainder of a
division (e.g. 5 % 2 = 1).

66

Operators and Assignments

Care must be taken with the modulus, because it's not the equivalent of the mathematical
modulus: (-5) % 2 is not 1, but -1. Division of integers will return an integer, and the division
of a negative integer by a positive integer will round towards zero instead of rounding down
(e.g. (-5) / 3 = -1 instead of -2).

There is no inline operator to do the power (e.g. 5 ˆ 2 is not 25, and 5 ** 2 is an error),
but there is a power function1.

The mathematical order of operations does apply. For example (2 + 3) * 2 = 10 while 2 +
3 * 2 = 8. Multiplicative operators have precedence over additive operators.

#include <stdio.h>

int main()

{

int i = 0, j = 0;

/* while i is less than 5 AND j is less than 5, loop */

while((i < 5) && (j < 5))

{

/* postfix increment, i++

* the value of i is read and then incremented

*/

printf("i: %d\t", i++);

/*

* prefix increment, ++j

* the value of j is incremented and then read

*/

printf("j: %d\n", ++j);

}

printf("At the end they have both equal values:\ni: %d\tj: %d\n", i, j);

return 0;

}

will display the following:

i: 0 j: 1

i: 1 j: 2

i: 2 j: 3

i: 3 j: 4

i: 4 j: 5

At the end they have both equal values:

i: 5 j: 5

14.1.6 shift and rotate

Shift functions are often used in low-level I/O hardware interfacing. Shift and rotate func-
tions are heavily used in cryptography and software floating point emulation. Other than
that, shifts can be used in place of division or multiplication by a power of two. Many
processors have dedicated function blocks to make these operations fast -- see Micropro-
cessor Design/Shift and Rotate Blocks2. On processors which have such blocks, most C

1 Chapter 15.4 on page 77
2 http://en.wikibooks.org/wiki/Microprocessor%20Design%2FShift%20and%20Rotate%20Blocks

67

http://en.wikibooks.org/wiki/Microprocessor%20Design%2FShift%20and%20Rotate%20Blocks

Simple math

compilers compile shift and rotate operators to a single assembly-language instruction --
see X86 Assembly/Shift and Rotate3.

shift left

The << operator shifts the binary representation to the left, dropping the most significant
bits and appending it with zero bits. The result is equivalent to multiplying the integer by
a power of two.

unsigned shift right

The unsigned shift right operator, also sometimes called the logical right shift operator.
It shifts the binary representation to the right, dropping the least significant bits and
prepending it with zeros. The >> operator is equivalent to division by a power of two for
unsigned integers.

signed shift right

The signed shift right operator, also sometimes called the arithmetic right shift operator. It
shifts the binary representation to the right, dropping the least significant bit, but prepend-
ing it with copies of the original sign bit. The >> operator is not equivalent to division for
signed integers.

In C, the behavior of the >> operator depends on the data type it acts on. Therefore, a
signed and an unsigned right shift looks exactly the same, but produces a different result
in some cases.

rotate right

Contrary to popular belief, it is possible to write C code that compiles down to the "rotate"
assembly language instruction (on CPUs that have such an instruction).

Most compilers recognize this idiom:

unsigned int x;

unsigned int y;

/* ... */

y = (x >> shift) | (x << (32 - shift));

and compile it to a single 32 bit rotate instruction. 4 5

3 http://en.wikibooks.org/wiki/X86%20Assembly%2FShift%20and%20Rotate

4 GCC: "Optimize common rotate constructs" ˆ{http://gcc.gnu.org/ml/gcc-patches/2007-11/

msg01112.html}

5 "Cleanups in ROTL/ROTR DAG combiner code" ˆ{http://www.mail-archive.com/llvm-commits@

cs.uiuc.edu/msg17216.html} mentions that this code supports the "rotate" instruction in the CellSPU

68

http://en.wikibooks.org/wiki/X86%20Assembly%2FShift%20and%20Rotate
http://gcc.gnu.org/ml/gcc-patches/2007-11/msg01112.html
http://gcc.gnu.org/ml/gcc-patches/2007-11/msg01112.html
http://www.mail-archive.com/llvm-commits@cs.uiuc.edu/msg17216.html
http://www.mail-archive.com/llvm-commits@cs.uiuc.edu/msg17216.html

Operators and Assignments

On some systems, this may be "#define"ed as a macro or defined as an inline function called
something like "rightrotate32" or "rotr32" or "ror32" in a standard header file like "bitops.h".
6

rotate left

Most compilers recognize this idiom:

unsigned int x;

unsigned int y;

/* ... */

y = (x << shift) | (x >> (32 - shift));

and compile it to a single 32 bit rotate instruction.

On some systems, this may be "#define"ed as a macro or defined as an inline function called
something like "leftrotate32" or "rotl32" in a header file like "bitops.h".

14.1.7 Relational and equality operators

The relational binary operators < (less than), > (greater than), <= (less than or equal),
and >= (greater than or equal) operators return a value of 1 if the result of the operation
is true, 0 if false.

The equality binary operators == (equals) and != (not equals) operators are similar to the
relational operators except that their precedence is lower.

14.1.8 Bitwise operators

The bitwise operators are & (and), ˆ (exclusive or) and | (inclusive or). The & operator has
higher precedence than ˆ, which has higher precedence than |.

14.1.9 Logical operators

The logical operators are && (and), and || (or). Both of these operators produce 1 if the
relationship is true and 0 for false. Both of these operators short-circuit; if the result of the
expression can be determined from the first operand, the second is ignored.

&& is used to evaluate expressions left to right, and returns a 1 if both statements are true.

int x = 7;

int y = 5;

if(x == 7 && y == 5) {

...

}

6 "replace private copy of bit rotation routines" ˆ{http://kerneltrap.org/mailarchive/

linux-kernel/2008/4/15/1440064} -- recommends includeing "bitops.h" and using its rol32 and ror32
rather than copy-and-paste into a new program.

69

http://kerneltrap.org/mailarchive/linux-kernel/2008/4/15/1440064
http://kerneltrap.org/mailarchive/linux-kernel/2008/4/15/1440064

Simple math

Here, the && operator checks the left-most expression, then the expression to it's right.
Since both statements return true, the && operator returns true, and the code block is
executed.

if(x == 5 && y == 5) {

...

}

The && operator checks in the same way as before, and finds that the first expression is
false. The && operator stops evaluating as soon as it finds a statement to be false, and
returns a false.

|| is used to evaluate expressions left to right, and returns a 1 if either of the expressions
are true.

/* Use the same variables as before. */

if(x == 2 || y == 5) { // the || statement checks both expressions, finds

that the latter is true, and returns true

...

}

The || operator here checks the left-most expression, finds it false, but continues to evaluate
the next expression. It finds that the next expression returns true, stops, and returns a
1. Much how the && operator ceases when it finds an expression that returns false, the ||

operator ceases when it finds an expression that returns true.

It is worth noting that C does not have Boolean values (true and false) commonly found in
other languages. It instead interprets a 0 as false, and any nonzero value as true.

14.1.10 Conditional operators

The ternary ?: operator is the conditional operator. The expression (x ? y : z) has
the value of y if x is nonzero, z otherwise.

Example:

int x = 0;

int y;

y = (x ? 10:6);

The expression x evaluates to 0. The ternary operator then looks for the "if-false" value,
which in this case, is 6. It returns that, so y is equal to six. Had x been a non-zero, then
the expression would have returned a 10.

70

Operators and Assignments

14.1.11 Assignment operators

The assignment operators are =, *=, /=, %=, +=, -=, <<=, >>=, &=, ˆ=, and |= . The
= operator stores the value of the right operand into the location determined by the left
operand, which must be an lvalue7

For the others, x op= y is shorthand for x = x op (y) . Hence, the following expressions
are the same :

1. x += y - x = x+y

2. x -= y - x = x-y

3. x *= y - x = x*y

4. x /= y - x = x/y

5. x %= y - x = x%y

14.1.12 Comma operator

The operator with the least precedence is the comma operator. The value of the expression
x, y will evaluate both x and y, but provides the value of y.

This operator is useful for including multiple actions in one statement (e.g. within a for
loop conditional).

Here are some small examples of the comma operator:

int i, x; /* declares two ints, i and x, in one statement */

/* this loop initializes x and i to 0, then runs the loop */

for(x = 0, i = 0; i <= 6; i++) {

printf("x = %d, and i = %d\n", x, i);

}

pl:C/Operatory8

7 http://en.wikibooks.org/wiki/lvalue

8 http://pl.wikibooks.org/wiki/C%2FOperatory

71

http://en.wikibooks.org/wiki/lvalue
http://pl.wikibooks.org/wiki/C%2FOperatory

15 Further math

w:math.h1

The <math.h> header contains prototypes for several functions that deal with mathematics.
In the 1990 version of the ISO standard, only the double versions of the functions were
specified; the 1999 version added the float and long double versions. To use these math
functions, you must link your program with the math library. For some compilers (including
GCC), you must specify the additional parameter -lm.

The functions can be grouped into the following categories:

15.1 Trigonometric functions

15.1.1 The acos and asin functions

The acos functions return the arccosine of their arguments in radians, and the asin func-
tions return the arcsine of their arguments in radians. All functions expect the argument
in the range [-1,+1]. The arccosine returns a value in the range [0,π]; the arcsine returns a
value in the range [-π/2,+π/2].

#include <math.h>

float asinf(float x); /* C99 */

float acosf(float x); /* C99 */

double asin(double x);

double acos(double x);

long double asinl(long double x); /* C99 */

long double acosl(long double x); /* C99 */

15.1.2 The atan and atan2 functions

The atan functions return the arctangent of their arguments in radians, and the atan2

function return the arctangent of y/x in radians. The atan functions return a value in the
range [-π/2,+π/2] (the reason why ±π/2 are included in the range is because the floating-
point value may represent infinity, and atan(±∞) = ±π/2); the atan2 functions return a
value in the range [-π/2,+π/2]. For atan2, a domain error may occur if both arguments
are zero.

#include <math.h>

float atanf(float x); /* C99 */

float atan2f(float y, float x); /* C99 */

1 http://en.wikipedia.org/wiki/math.h

73

http://en.wikipedia.org/wiki/math.h

Further math

double atan(double x);

double atan2(double y, double x);

long double atanl(long double x); /* C99 */

long double atan2l(long double y, long double x); /* C99 */

15.1.3 The cos, sin, and tan functions

The cos, sin, and tan functions return the cosine, sine, and tangent of the argument,
expressed in radians.

#include <math.h>

float cosf(float x); /* C99 */

float sinf(float x); /* C99 */

float tanf(float x); /* C99 */

double cos(double x);

double sin(double x);

double tan(double x);

long double cosl(long double x); /* C99 */

long double sinl(long double x); /* C99 */

long double tanl(long double x); /* C99 */

15.2 Hyperbolic functions

The cosh, sinh and tanh functions compute the hyperbolic cosine, the hyperbolic sine,
and the hyperbolic tangent of the argument respectively. For the hyperbolic sine and
cosine functions, a range error occurs if the magnitude of the argument is too large.

The acosh functions compute the inverse hyperbolic cosine of the argument. A domain
error occurs for arguments less than 1.

The asinh functions compute the inverse hyperbolic sine of the argument.

The atanh functions compute the inverse hyperbolic tangent of the argument. A domain
error occurs if the argument is not in the interval [-1, +1]. A range error may occur if the
argument equals -1 or +1.

#include <math.h>

float coshf(float x); /* C99 */

float sinhf(float x); /* C99 */

float tanhf(float x); /* C99 */

double cosh(double x);

double sinh(double x);

double tanh(double x);

long double coshl(long double x); /* C99 */

long double sinhl(long double x); /* C99 */

long double tanhl(long double x); /* C99 */

float acoshf(float x); /* C99 */

float asinhf(float x); /* C99 */

float atanhf(float x); /* C99 */

double acosh(double x); /* C99 */

double asinh(double x); /* C99 */

double atanh(double x); /* C99 */

long double acoshl(long double x); /* C99 */

long double asinhl(long double x); /* C99 */

long double atanhl(long double x); /* C99 */

74

Exponential and logarithmic functions

15.3 Exponential and logarithmic functions

15.3.1 The exp, exp2, and expm1 functions

The exp functions compute the base-e exponential function of x (ex). A range error occurs
if the magnitude of x is too large.

The exp2 functions compute the base-2 exponential function of x (2x). A range error occurs
if the magnitude of x is too large.

The expm1 functions compute the base-e exponential function of the argument, minus 1. A
range error occurs in the magnitude of x is too large.

#include <math.h>

float expf(float x); /* C99 */

double exp(double x);

long double expl(long double x); /* C99 */

float exp2f(float x); /* C99 */

double exp2(double x); /* C99 */

long double exp2l(long double x); /* C99 */

float expm1f(float x); /* C99 */

double expm1(double x); /* C99 */

long double expm1l(long double x); /* C99 */

15.3.2 The frexp, ldexp, modf, scalbn, and scalbln functions

These functions are heavily used in software floating-point emulators, but are otherwise
rarely directly called.

Inside the computer, each floating point number is represented by two parts:

• The significand is either in the range [1/2, 1), or it equals zero.
• The exponent is an integer.

The value of a floating point number v is v = significand×2exponent.

The frexp functions break the argument floating point number value into those two parts,
the exponent and significand. After breaking it apart, it stores the exponent in the int

object pointed to by ex, and returns the significand. In other words, the value returned is
a copy of the given floating point number but with an exponent replaced by 0. If value is
zero, both parts of the result are zero.

The ldexp functions multiply a floating-point number by a integral power of 2 and return
the result. In other words, it returns copy of the given floating point number with the
exponent increased by ex. A range error may occur.

The modf functions break the argument value into integer and fraction parts, each of which
has the same sign as the argument. They store the integer part in the object pointed to
by *iptr and return the fraction part. The *iptr is a floating-point type, rather than an
"int" type, because it might be used to store an integer like 1 000 000 000 000 000 000 000
which is too big to fit in an int.

The scalbn and scalbln compute x × FLT_RADIXn. FLT_RADIX is the base of the floating-
point system; if it is 2, the functions are equivalent to ldexp.

75

Further math

#include <math.h>

float frexpf(float value, int *ex); /* C99 */

double frexp(double value, int *ex);

long double frexpl(long double value, int *ex); /* C99 */

float ldexpf(float x, int ex); /* C99 */

double ldexp(double x, int ex);

long double ldexpl(long double x, int ex); /* C99 */

float modff(float value, float *iptr); /* C99 */

double modf(double value, double *iptr);

long double modfl(long double value, long double *iptr); /* C99 */

float scalbnf(float x, int ex); /* C99 */

double scalbn(double x, int ex); /* C99 */

long double scalbnl(long double x, int ex); /* C99 */

float scalblnf(float x, long int ex); /* C99 */

double scalbln(double x, long int ex); /* C99 */

long double scalblnl(long double x, long int ex); /* C99 */

Most C floating point libraries also implement the IEEE754-recommended nextafter(),
nextUp(), and nextDown() functions. http://www.opengroup.org/onlinepubs/

009695399/functions/nextafter.html

15.3.3 The log, log2, log1p, and log10 functions

The log functions compute the base-e natural (not common) logarithm of the argument
and return the result. A domain error occurs if the argument is negative. A range error
may occur if the argument is zero.

The log1p functions compute the base-e natural (not common) logarithm of one plus the
argument and return the result. A domain error occurs if the argument is less than -1. A
range error may occur if the argument is -1.

The log10 functions compute the common (base-10) logarithm of the argument and return
the result. A domain error occurs if the argument is negative. A range error may occur if
the argument is zero.

The log2 functions compute the base-2 logarithm of the argument and return the result. A
domain error occurs if the argument is negative. A range error may occur if the argument
is zero.

#include <math.h>

float logf(float x); /* C99 */

double log(double x);

long double logl(long double x); /* C99 */

float log1pf(float x); /* C99 */

double log1p(double x); /* C99 */

long double log1pl(long double x); /* C99 */

float log10f(float x); /* C99 */

double log10(double x);

long double log10l(long double x); /* C99 */

float log2f(float x); /* C99 */

double log2(double x); /* C99 */

long double log2l(long double x); /* C99 */

76

http://www.opengroup.org/onlinepubs/009695399/functions/nextafter.html
http://www.opengroup.org/onlinepubs/009695399/functions/nextafter.html

Power functions

15.3.4 The ilogb and logb functions

The ilogb functions extract the exponent of x as a signed int value. If x is zero, they
return the value FP_ILOGB0; if x is infinite, they return the value INT_MAX; if x is not-a-
number they return the value FP_ILOGBNAN; otherwise, they are equivalent to calling the
corresponding logb function and casting the returned value to type int. A range error may
occur if x is zero. FP_ILOGB0 and FP_ILOGBNAN are macros defined in math.h; INT_MAX is
a macro defined in limits.h.

The logb functions extract the exponent of x as a signed integer value in floating-point
format. If x is subnormal, it is treated as if it were normalized; thus, for positive finite x, 1
≤ x × FLT_RADIX-logb(x)

< FLT_RADIX . FLT_RADIX is the radix for floating-point numbers,
defined in the float.h header.

#include <math.h>

int ilogbf(float x); /* C99 */

int ilogb(double x); /* C99 */

int double ilogbl(long double x); /* C99 */

float logbf(float x); /* C99 */

double logb(double x); /* C99 */

long double logbl(long double x); /* C99 */

15.4 Power functions

15.4.1 The pow functions

The pow functions compute x raised to the power y and return the result. A domain error
occurs if x is negative and y is not an integral value. A domain error occurs if the result
cannot be represented when x is zero and y is less than or equal to zero. A range error may
occur.

#include <math.h>

float powf(float x, float y); /* C99 */

double pow(double x, double y);

long double powl(long double x, long double y); /* C99 */

15.4.2 The sqrt functions

The sqrt functions compute the positive square root of x and return the result. A domain
error occurs if the argument is negative.

#include <math.h>

float sqrtf(float x); /* C99 */

double sqrt(double x);

long double sqrtl(long double x); /* C99 */

15.4.3 The cbrt functions

The cbrt functions compute the cube root of x and return the result.

77

Further math

#include <math.h>

float cbrtf(float x); /* C99 */

double cbrt(double x); /* C99 */

long double cbrtl(long double x); /* C99 */

15.4.4 The hypot functions

The hypot functions compute the square root of the sums of the squares of x and y, without
overflow or underflow, and return the result.

#include <math.h>

float hypotf(float x, float y); /* C99 */

double hypot(double x, double y); /* C99 */

long double hypotl(long double x, long double y); /* C99 */

15.5 Nearest integer, absolute value, and remainder
functions

15.5.1 The ceil and floor functions

The ceil functions compute the smallest integral value not less than x and return the
result; the floor functions compute the largest integral value not greater than x and return
the result.

#include <math.h>

float ceilf(float x); /* C99 */

double ceil(double x);

long double ceill(long double x); /* C99 */

float floorf(float x); /* C99 */

double floor(double x);

long double floorl(long double x); /* C99 */

15.5.2 The fabs functions

The fabs functions compute the absolute value of a floating-point number x and return the
result.

#include <math.h>

float fabsf(float x); /* C99 */

double fabs(double x);

long double fabsl(long double x); /* C99 */

15.5.3 The fmod functions

The fmod functions compute the floating-point remainder of x/y and return the value x -
i * y, for some integer i such that, if y is nonzero, the result has the same sign as x and
magnitude less than the magnitude of y. If y is zero, whether a domain error occurs or the
fmod functions return zero is implementation-defined.

78

Nearest integer, absolute value, and remainder functions

#include <math.h>

float fmodf(float x, float y); /* C99 */

double fmod(double x, double y);

long double fmodl(long double x, long double y); /* C99 */

15.5.4 The nearbyint, rint, lrint, and llrint functions

The nearbyint functions round their argument to an integer value in floating-point for-
mat, using the current rounding direction and without raising the "inexact" floating-point
exception.

The rint functions are similar to the nearbyint functions except that they can raise the
"inexact" floating-point exception if the result differs in value from the argument.

The lrint and llrint functions round their arguments to the nearest integer value ac-
cording to the current rounding direction. If the result is outside the range of values of the
return type, the numeric result is undefined and a range error may occur if the magnitude
of the argument is too large.

#include <math.h>

float nearbyintf(float x); /* C99 */

double nearbyint(double x); /* C99 */

long double nearbyintl(long double x); /* C99 */

float rintf(float x); /* C99 */

double rint(double x); /* C99 */

long double rintl(long double x); /* C99 */

long int lrintf(float x); /* C99 */

long int lrint(double x); /* C99 */

long int lrintl(long double x); /* C99 */

long long int llrintf(float x); /* C99 */

long long int llrint(double x); /* C99 */

long long int llrintl(long double x); /* C99 */

15.5.5 The round, lround, and llround functions

The round functions round the argument to the nearest integer value in floating-point
format, rounding halfway cases away from zero, regardless of the current rounding direction.

The lround and llround functions round the argument to the nearest integer value, round-
ing halfway cases away from zero, regardless of the current rounding direction. If the result
is outside the range of values of the return type, the numeric result is undefined and a range
error may occur if the magnitude of the argument is too large.

#include <math.h>

float roundf(float x); /* C99 */

double round(double x); /* C99 */

long double roundl(long double x); /* C99 */

long int lroundf(float x); /* C99 */

long int lround(double x); /* C99 */

long int lroundl(long double x); /* C99 */

long long int llroundf(float x); /* C99 */

long long int llround(double x); /* C99 */

long long int llroundl(long double x); /* C99 */

79

Further math

15.5.6 The trunc functions

The trunc functions round their argument to the integer value in floating-point format that
is nearest but no larger in magnitude than the argument.

#include <math.h>

float truncf(float x); /* C99 */

double trunc(double x); /* C99 */

long double truncl(long double x); /* C99 */

15.5.7 The remainder functions

The remainder functions compute the remainder x REM y as defined by IEC 60559. The
definition reads, "When y ≠ 0, the remainder r = x REM y is defined regardless of the
rounding mode by the mathematical reduction r = x - ny, where n is the integer nearest
the exact value of x/y; whenever |n - x/y| = 1

2 , then n is even. Thus, the remainder is
always exact. If r = 0, its sign shall be that of x." This definition is applicable for all
implementations.

#include <math.h>

float remainderf(float x, float y); /* C99 */

double remainder(double x, double y); /* C99 */

long double remainderl(long double x, long double y); /* C99 */

15.5.8 The remquo functions

The remquo functions return the same remainder as the remainder functions. In the object
pointed to by quo, they store a value whose sign is the sign of x/y and whose magnitude
is congruent modulo 2n to the magnitude of the integral quotient of x/y, where n is an
implementation-defined integer greater than or equal to 3.

#include <math.h>

float remquof(float x, float y, int *quo); /* C99 */

double remquo(double x, double y, int *quo); /* C99 */

long double remquol(long double x, long double y, int *quo); /* C99 */

15.6 Error and gamma functions

The erf functions compute the error function of the argument (2/(π
1
2) ∫0

x e-t2
dt); the

erfc functions compute the complimentary error function of the argument (that is, 1 - erf
x). For the erfc functions, a range error may occur if the argument is too large.

The lgamma functions compute the natural logarithm of the absolute value of the gamma
of the argument (that is, loge|Γ(x)|). A range error may occur if the argument is a negative
integer or zero.

The tgamma functions compute the gamma of the argument (that is, Γ(x)). A domain error
occurs if the argument is a negative integer or if the result cannot be represented when the
argument is zero. A range error may occur.

80

Further reading

#include <math.h>

float erff(float x); /* C99 */

double erf(double x); /* C99 */

long double erfl(long double x); /* C99 */

float erfcf(float x); /* C99 */

double erfc(double x); /* C99 */

long double erfcl(long double x); /* C99 */

float lgammaf(float x); /* C99 */

double lgamma(double x); /* C99 */

long double lgammal(long double x); /* C99 */

float tgammaf(float x); /* C99 */

double tgamma(double x); /* C99 */

long double tgammal(long double x); /* C99 */

15.7 Further reading

w:circular shift2

pl:C/Zaawansowane operacje matematyczne3

2 http://en.wikipedia.org/wiki/circular%20shift

3 http://pl.wikibooks.org/wiki/C%2FZaawansowane%20operacje%20matematyczne

81

http://en.wikipedia.org/wiki/circular%20shift
http://pl.wikibooks.org/wiki/C%2FZaawansowane%20operacje%20matematyczne

16 Control

Very few programs follow exactly one control path and have each instruction stated explic-
itly. In order to program effectively, it is necessary to understand how one can alter the
steps taken by a program due to user input or other conditions, how some steps can be
executed many times with few lines of code, and how programs can appear to demonstrate a
rudimentary grasp of logic. C constructs known as conditionals and loops grant this power.

From this point forward, it is necessary to understand what is usually meant by the word
block. A block is a group of code statements that are associated and intended to be executed
as a unit. In C, the beginning of a block of code is denoted with { (left curly), and the
end of a block is denoted with }. It is not necessary to place a semicolon after the end of a
block. Blocks can be empty, as in {}. Blocks can also be nested; i.e. there can be blocks of
code within larger blocks.

16.1 Conditionals

There is likely no meaningful program written in which a computer does not demonstrate
basic decision-making skills. It can actually be argued that there is no meaningful human
activity in which some sort of decision-making, instinctual or otherwise, does not take place.
For example, when driving a car and approaching a traffic light, one does not think, "I will
continue driving through the intersection." Rather, one thinks, "I will stop if the light is
red, go if the light is green, and if yellow go only if I am traveling at a certain speed a
certain distance from the intersection." These kinds of processes can be simulated in C
using conditionals.

A conditional is a statement that instructs the computer to execute a certain block of code
or alter certain data only if a specific condition has been met. The most common conditional
is the If-Else statement, with conditional expressions and Switch-Case statements typically
used as more shorthanded methods.

Before one can understand conditional statements, it is first necessary to understand how C
expresses logical relations. C treats logic as being arithmetic. The value 0 (zero) represents
false, and all other values represent true. If you chose some particular value to represent
true and then compare values against it, sooner or later your code will fail when your
assumed value (often 1) turns out to be incorrect. Code written by people uncomfortable
with the C language can often be identified by the usage of #define to make a "TRUE"
value. 1

1 C FAQ ˆ{http://www.c-faq.com/bool/bool2.html}

83

http://www.c-faq.com/bool/bool2.html

Control

Because logic is arithmetic in C, arithmetic operators and logical operators are one and
the same. Nevertheless, there are a number of operators that are typically associated with
logic:

16.1.1 Relational and Equivalence Expressions:

a < b

1 if a is less than b, 0 otherwise.

a > b

1 if a is greater than b, 0 otherwise.

a <= b

1 if a is less than or equal to b, 0 otherwise.

a >= b

1 if a is greater than or equal to b, 0 otherwise.

a == b

1 if a is equal to b, 0 otherwise.

a != b

1 if a is not equal to b, 0 otherwise

New programmers should take special note of the fact that the "equal to" operator is ==,
not =. This is the cause of numerous coding mistakes and is often a difficult-to-find bug, as
the expression (a = b) sets a equal to b and subsequently evaluates to b; but the expression
(a == b), which is usually intended, checks if a is equal to b. It needs to be pointed out
that, if you confuse = with ==, your mistake will often not be brought to your attention
by the compiler. A statement such as if (c = 20) {} is considered perfectly valid by
the language, but will always assign 20 to c and evaluate as true. A simple technique to
avoid this kind of bug (in many, not all cases) is to put the constant first. This will cause
the compiler to issue an error, if == got misspelled with =.

Note that C does not have a dedicated boolean type as many other languages do. 0 means
false and anything else true. So the following are equivalent:

if (foo()) {

//do something

}

and

if (foo() != 0) {

//do something

}

Often #define TRUE 1 and #define FALSE 0 are used to work around the lack of a boolean
type. This is bad practice, since it makes assumptions that do not hold. It is a better idea

84

Conditionals

to indicate what you are actually expecting as a result from a function call, as there are
many different ways of indicating error conditions, depending on the situation.

if (strstr("foo", bar) >= 0) {

//bar contains "foo"

}

Here, strstr returns the index where the substring foo is found and -1 if it was not found.
Note that this would fail with the TRUE definition mentioned in the previous paragraph. It
would also not produce the expected results if we omitted the >= 0.

One other thing to note is that the relational expressions do not evaluate as they would
in mathematical texts. That is, an expression myMin < value < myMax does not evaluate
as you probably think it might. Mathematically, this would test whether or not value is
between myMin and myMax. But in C, what happens is that value is first compared with
myMin. This produces either a 0 or a 1. It is this value that is compared against myMax.
Example:

int value = 20;

/* ... */

if (0 < value < 10) { // don't do this! it always evaluates to "true"!

/* do some stuff */

}

Because value is greater than 0, the first comparison produces a value of 1. Now 1 is
compared to be less than 10, which is true, so the statements in the if are executed. This
probably is not what the programmer expected. The appropriate code would be

int value = 20;

/* ... */

if (0 < value && value < 10) { // the && means "and"

/* do some stuff */

}

16.1.2 Logical Expressions

a || b

when EITHER a or b is true (or both), the result is 1, otherwise the result is 0.

a && b

when BOTH a and b are true, the result is 1, otherwise the result is 0.

!a

when a is true, the result is 0, when a is 0, the result is 1.

Here's an example of a larger logical expression. In the statement:

e = ((a && b) || (c > d));

e is set equal to 1 if a and b are non-zero, or if c is greater than d. In all other cases, e is
set to 0.

85

Control

C uses short circuit evaluation of logical expressions. That is to say, once it is able to
determine the truth of a logical expression, it does no further evaluation. This is often
useful as in the following:

int myArray[12];

....

if (i < 12 && myArray[i] > 3) {

....

In the snippet of code, the comparison of i with 12 is done first. If it evaluates to 0 (false),
i would be out of bounds as an index to myArray. In this case, the program never
attempts to access myArray[i] since the truth of the expression is known to be false.
Hence we need not worry here about trying to access an out-of-bounds array element if
it is already known that i is greater than or equal to zero. A similar thing happens with
expressions involving the or || operator.

while(doThis() || doThat()) ...

doThat() is never called if doThis() returns a non-zero (true) value.

16.1.3 Bitwise Boolean Expressions

The bitwise operators work bit by bit on the operands. The operands must be of integral
type (one of the types used for integers). The six bitwise operators are & (AND), | (OR),
ˆ (exclusive OR, commonly called XOR), ˜ (NOT, which changes 1 to 0 and 0 to 1), <<
(shift left), and >> (shift right). The negation operator is a unary operator which precedes
the operand. The others are binary operators which lie between the two operands. The
precedence of these operators is lower than that of the relational and equivalence operators;
it is often required to parenthesize expressions involving bitwise operators.

For this section, recall that a number starting with 0x is hexadecimal, or hex for short.
Unlike the normal decimal system using powers of 10 and digits 0123456789, hex uses powers
of 16 and digits 0123456789abcdef. Hexadecimal is commonly used in C programs because
a programmer can quickly convert it to or from binary (powers of 2 and digits 01). C does
not directly support binary notation, which would be really verbose anyway.

a & b

bitwise boolean and of a and b

0xc & 0xa produces the value 0x8 (in binary, 1100 & 1010 produces 1000)

a | b

bitwise boolean or of a and b

0xc | 0xa produces the value 0xe (in binary, 1100 | 1010 produces 1110)

a ˆ b

bitwise xor of a and b

86

Conditionals

0xc ˆ 0xa produces the value 0x6 (in binary, 1100 ˆ 1010 produces 0110)

˜a

bitwise complement of a.

˜0xc produces the value -1-0xc (in binary, ˜1100 produces ...11110011 where "..." may be
many more 1 bits)

a << b

shift a left by b (multiply a by 2b)

0xc << 1 produces the value 0x18 (in binary, 1100 << 1 produces the value 11000)

a >> b

shift a right by b (divide a by 2b)

0xc >> 1 produces the value 0x6 (in binary, 1100 >> 1 produces the value 110)

16.1.4 The If-Else statement

If-Else provides a way to instruct the computer to execute a block of code only if certain
conditions have been met. The syntax of an If-Else construct is:

if (/* condition goes here */) {

/* if the condition is non-zero (true), this code will execute */

} else {

/* if the condition is 0 (false), this code will execute */

}

The first block of code executes if the condition in parentheses directly after the if evaluates
to non-zero (true); otherwise, the second block executes.

The else and following block of code are completely optional. If there is no need to execute
code if a condition is not true, leave it out.

Also, keep in mind that an if can directly follow an else statement. While this can occa-
sionally be useful, chaining more than two or three if-elses in this fashion is considered bad
programming practice. We can get around this with the Switch-Case construct described
later.

Two other general syntax notes need to be made that you will also see in other control
constructs: First, note that there is no semicolon after if or else. There could be, but the
block (code enclosed in { and }) takes the place of that. Second, if you only intend to
execute one statement as a result of an if or else, curly braces are not needed. However,
many programmers believe that inserting curly braces anyway in this case is good coding
practice.

The following code sets a variable c equal to the greater of two variables a and b, or 0 if a
and b are equal.

if(a > b) {

c = a;

} else if(b > a) {

87

Control

c = b;

} else {

c = 0;

}

Consider this question: why can't you just forget about else and write the code like:

if(a > b) {

c = a;

}

if(a < b) {

c = b;

}

if(a == b) {

c = 0;

}

There are several answers to this. Most importantly, if your conditionals are not mutually
exclusive, two cases could execute instead of only one. If the code was different and the value
of a or b changes somehow (e.g.: you reset the lesser of a and b to 0 after the comparison)
during one of the blocks? You could end up with multiple if statements being invoked,
which is not your intent. Also, evaluating if conditionals takes processor time. If you use
else to handle these situations, in the case above assuming (a > b) is non-zero (true), the
program is spared the expense of evaluating additional if statements. The bottom line is
that it is usually best to insert an else clause for all cases in which a conditional will not
evaluate to non-zero (true).

The conditional expression

A conditional expression is a way to set values conditionally in a more shorthand fashion
than If-Else. The syntax is:

(/* logical expression goes here */) ? (/* if non-zero (true) */) : (/* if 0

(false) */)

The logical expression is evaluated. If it is non-zero (true), the overall conditional
expression evaluates to the expression placed between the ? and :, otherwise, it evaluates
to the expression after the :. Therefore, the above example (changing its function slightly
such that c is set to b when a and b are equal) becomes:

c = (a > b) ? a : b;

Conditional expressions can sometimes clarify the intent of the code. Nesting the conditional
operator should usually be avoided. It's best to use conditional expressions only when the
expressions for a and b are simple. Also, contrary to a common beginner belief, conditional
expressions do not make for faster code. As tempting as it is to assume that fewer lines of
code result in faster execution times, there is no such correlation.

88

Conditionals

16.1.5 The Switch-Case statement

Say you write a program where the user inputs a number 1-5 (corresponding to student
grades, A(represented as 1)-D(4) and F(5)), stores it in a variable grade and the program
responds by printing to the screen the associated letter grade. If you implemented this
using If-Else, your code would look something like this:

if(grade == 1) {

printf("A\n");

} else if(grade == 2) {

printf("B\n");

} else if /* etc. etc. */

Having a long chain of if-else-if-else-if-else can be a pain, both for the programmer and
anyone reading the code. Fortunately, there's a solution: the Switch-Case construct, of
which the basic syntax is:

switch(/* integer or enum goes here */) {

case /* potential value of the aforementioned int or enum */ :

/* code */

case /* a different potential value */ :

/* different code */

/* insert additional cases as needed */

default:

/* more code */

}

The Switch-Case construct takes a variable, usually an int or an enum, placed after switch,
and compares it to the value following the case keyword. If the variable is equal to the
value specified after case, the construct "activates", or begins executing the code after the
case statement. Once the construct has "activated", there will be no further evaluation of
cases.

Switch-Case is syntactically "weird" in that no braces are required for code associated with
a case.

Very important: Typically, the last statement for each case is a break statement. This
causes program execution to jump to the statement following the closing bracket of the
switch statement, which is what one would normally want to happen. However if the break
statement is omitted, program execution continues with the first line of the next case, if any.
This is called a fall-through. When a programmer desires this action, a comment should be
placed at the end of the block of statements indicating the desire to fall through. Otherwise
another programmer maintaining the code could consider the omission of the 'break' to be
an error, and inadvertently 'correct' the problem. Here's an example:

switch (someVariable) {

case 1:

printf("This code handles case 1\n");

break;

case 2:

printf("This prints when someVariable is 2, along with...\n");

/* FALL THROUGH */

case 3:

printf("This prints when someVariable is either 2 or 3.\n");

break;

}

89

Control

If a default case is specified, the associated statements are executed if none of the other
cases match. A default case is optional. Here's a switch statement that corresponds to the
sequence of if - else if statements above.

Back to our example above. Here's what it would look like as Switch-Case:

switch (grade) {

case 1:

printf("A\n");

break;

case 2:

printf("B\n");

break;

case 3:

printf("C\n");

break;

case 4:

printf("D\n");

break;

default:

printf("F\n");

break;

}

A set of statements to execute can be grouped with more than one value of the variable
as in the following example. (the fall-through comment is not necessary here because the
intended behavior is obvious)

switch (something) {

case 2:

case 3:

case 4:

/* some statements to execute for 2, 3 or 4 */

break;

case 1:

default:

/* some statements to execute for 1 or other than 2,3,and 4 */

break;

}

Switch-Case constructs are particularly useful when used in conjunction with user defined
enum data types. Some compilers are capable of warning about an unhandled enum value,
which may be helpful for avoiding bugs.

16.2 Loops

Often in computer programming, it is necessary to perform a certain action a certain number
of times or until a certain condition is met. It is impractical and tedious to simply type a
certain statement or group of statements a large number of times, not to mention that this
approach is too inflexible and unintuitive to be counted on to stop when a certain event
has happened. As a real-world analogy, someone asks a dishwasher at a restaurant what he
did all night. He will respond, "I washed dishes all night long." He is not likely to respond,
"I washed a dish, then washed a dish, then washed a dish, then...". The constructs that
enable computers to perform certain repetitive tasks are called loops.

90

Loops

16.2.1 While loops

A while loop is the most basic type of loop. It will run as long as the condition is non-zero
(true). For example, if you try the following, the program will appear to lock up and you
will have to manually close the program down. A situation where the conditions for exiting
the loop will never become true is called an infinite loop.

int a=1;

while(42) {

a = a*2;

}

Here is another example of a while loop. It prints out all the powers of two less than 100.

int a=1;

while(a<100) {

printf("a is %d \n",a);

a = a*2;

}

The flow of all loops can also be controlled by break and continue statements. A break
statement will immediately exit the enclosing loop. A continue statement will skip the re-
mainder of the block and start at the controlling conditional statement again. For example:

int a=1;

while (42) { // loops until the break statement in the loop is executed

printf("a is %d ",a);

a = a*2;

if(a>100) {

break;

} else if(a==64) {

continue; // Immediately restarts at while, skips next step

}

printf("a is not 64\n");

}

In this example, the computer prints the value of a as usual, and prints a notice that a is
not 64 (unless it was skipped by the continue statement).

Similar to If above, braces for the block of code associated with a While loop can be omitted
if the code consists of only one statement, for example:

int a=1;

while(a < 100) a = a*2;

This will merely increase a until a is not less than 100.

When the computer reaches the end of the while loop, it always goes back to the while
statement at the top of the loop, where it re-evaluates the controlling condition. If that
condition is "true" at that instant -- even if it was temporarily 0 for a few statements
inside the loop -- then the computer begins executing the statements inside the loop again;
otherwise the computer exits the loop. The computer does not "continuously check" the
controlling condition of a while loop during the execution of that loop. It only "peeks" at
the controlling condition each time it reaches the while at the top of the loop.

It is very important to note, once the controlling condition of a While loop becomes 0 (false),
the loop will not terminate until the block of code is finished and it is time to reevaluate

91

Control

the conditional. If you need to terminate a While loop immediately upon reaching a certain
condition, consider using break.

A common idiom is to write:

int i = 5;

while(i--) {

printf("java and c# can't do this\n");

}

This executes the code in the while loop 5 times, with i having values that range from 4
down to 0 (inside the loop). Conveniently, these are the values needed to access every item
of an array containing 5 elements.

16.2.2 For loops

For loops generally look something like this:

for(initialization; test; increment) {

/* code */

}

The initialization statement is executed exactly once - before the first evaluation of the test
condition. Typically, it is used to assign an initial value to some variable, although this is
not strictly necessary. The initialization statement can also be used to declare and initialize
variables used in the loop.

The test expression is evaluated each time before the code in the for loop executes. If this
expression evaluates as 0 (false) when it is checked (i.e. if the expression is not true), the
loop is not (re)entered and execution continues normally at the code immediately following
the FOR-loop. If the expression is non-zero (true), the code within the braces of the loop
is executed.

After each iteration of the loop, the increment statement is executed. This often is used to
increment the loop index for the loop, the variable initialized in the initialization expression
and tested in the test expression. Following this statement execution, control returns to the
top of the loop, where the test action occurs. If a continue statement is executed within the
for loop, the increment statement would be the next one executed.

Each of these parts of the for statement is optional and may be omitted. Because of the
free-form nature of the for statement, some fairly fancy things can be done with it. Often
a for loop is used to loop through items in an array, processing each item at a time.

int myArray[12];

int ix;

for (ix = 0; ix<12; ix++) {

myArray[ix] = 5 * ix + 3;

}

The above for loop initializes each of the 12 elements of myArray. The loop index can start
from any value. In the following case it starts from 1.

92

Loops

for(ix = 1; ix <= 10; ix++) {

printf("%d ", ix);

}

which will print

1 2 3 4 5 6 7 8 9 10

You will most often use loop indexes that start from 0, since arrays are indexed at zero,
but you will sometimes use other values to initialize a loop index as well.

The increment action can do other things, such as decrement. So this kind of loop is
common:

for (i = 5; i > 0; i--) {

printf("%d ",i);

}

which yields

5 4 3 2 1

Here's an example where the test condition is simply a variable. If the variable has a value
of 0 or NULL, the loop exits, otherwise the statements in the body of the loop are executed.

for (t = list_head; t; t = NextItem(t)) {

/*body of loop */

}

A WHILE loop can be used to do the same thing as a FOR loop, however a FOR loop
is a more condensed way to perform a set number of repetitions since all of the necessary
information is in a one line statement.

A FOR loop can also be given no conditions, for example:

for(;;) {

/* block of statements */

}

This is called an infinite loop since it will loop forever unless there is a break statement
within the statements of the for loop. The empty test condition effectively evaluates as
true.

It is also common to use the comma operator in for loops to execute multiple statements.

int i, j, n = 10;

for(i = 0, j = 0; i <= n; i++,j+=2) {

printf("i = %d , j = %d \n",i,j);

}

Special care should be taken when designing or refactoring the conditional part, especially
whether using < or <= , whether start and stop should be corrected by 1, and in case of
prefix- and postfix-notations. (On a 100 yards promenade with a tree every 10 yards there
are 11 trees.)

93

Control

int i, n = 10;

for(i = 0; i < n; i++) printf("%d ",i); // processed n times => 0 1 2 3 ...

(n-1)

printf("\n");

for(i = 0; i <= n; i++) printf("%d ",i); // processed (n+1) times => 0 1 2 3

... n

printf("\n");

for(i = n; i--;) printf("%d ",i); // processed n times => (n-1) ...3 2 1 0

printf("\n");

for(i = n; --i;) printf("%d ",i); // processed (n-1) times => (n-1) ...4 3 2 1

printf("\n");

16.2.3 Do-While loops

A DO-WHILE loop is a post-check while loop, which means that it checks the condition
after each run. As a result, even if the condition is zero (false), it will run at least once. It
follows the form of:

do {

/* do stuff */

} while (condition);

Note the terminating semicolon. This is required for correct syntax. Since this is also a
type of while loop, break and continue statements within the loop function accordingly.
A continue statement causes a jump to the test of the condition and a break statement
exits the loop.

It is worth noting that Do-While and While are functionally almost identical, with one
important difference: Do-While loops are always guaranteed to execute at least once, but
While loops will not execute at all if their condition is 0 (false) on the first evaluation.

16.3 One last thing: goto

goto is a very simple and traditional control mechanism. It is a statement used to imme-
diately and unconditionally jump to another line of code. To use goto, you must place a
label at a point in your program. A label consists of a name followed by a colon (:) on a
line by itself. Then, you can type "goto label;" at the desired point in your program. The
code will then continue executing beginning with label. This looks like:

MyLabel:

/* some code */

goto MyLabel;

The ability to transfer the flow of control enabled by gotos is so powerful that, in addition
to the simple if, all other control constructs can be written using gotos instead. Here, we
can let "S" and "T" be any arbitrary statements:

if (''cond'') {

S;

} else {

T;

94

One last thing: goto

}

/* ... */

The same statement could be accomplished using two gotos and two labels:

if (''cond'') goto Label1;

T;

goto Label2;

Label1:

S;

Label2:

/* ... */

Here, the first goto is conditional on the value of "cond". The second goto is unconditional.
We can perform the same translation on a loop:

while (''cond1'') {

S;

if (''cond2'') break;

T;

}

/* ... */

Which can be written as:

Start:

if (!''cond1'') goto End;

S;

if (''cond2'') goto End;

T;

goto Start;

End:

/* ... */

As these cases demonstrate, often the structure of what your program is doing can usu-
ally be expressed without using gotos. Undisciplined use of gotos can create unreadable,
unmaintainable code when more idiomatic alternatives (such as if-elses, or for loops) can
better express your structure. Theoretically, the goto construct does not ever have to be
used, but there are cases when it can increase readability, avoid code duplication, or make
control variables unnecessary. You should consider first mastering the idiomatic solutions,
and use goto only when necessary. Keep in mind that many, if not most, C style guidelines
strictly forbid use of goto, with the only common exceptions being the following examples.

One use of goto is to break out of a deeply nested loop. Since break will not work (it can
only escape one loop), goto can be used to jump completely outside the loop. Breaking
outside of deeply nested loops without the use of the goto is always possible, but often
involves the creation and testing of extra variables that may make the resulting code far
less readable than it would be with goto. The use of goto makes it easy to undo actions
in an orderly fashion, typically to avoid failing to free memory that had been allocated.

Another accepted use is the creation of a state machine. This is a fairly advanced topic
though, and not commonly needed.

95

Control

16.4 Examples

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int years;

printf("Enter your age in years : ");

fflush(stdout);

errno = 0;

if(scanf("%d", &years) != 1 || errno)

return EXIT_FAILURE;

printf("Your age in days is %d\n", years * 365);

return 0;

}

16.5 Further reading

de:C-Programmierung: Kontrollstrukturen2 et:Programmeerimiskeel C/Keelestruktuurid3

pl:C/Instrukcje sterujące4 pt:Programar em C/Controle de fluxo5 fi:C/Ohjausrakenteet6

2 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kontrollstrukturen

3 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKeelestruktuurid

4 http://pl.wikibooks.org/wiki/C%2FInstrukcje%20steruj%C4%85ce

5 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FControle%20de%20fluxo

6 http://fi.wikibooks.org/wiki/C%2FOhjausrakenteet

96

http://de.wikibooks.org/wiki/C-Programmierung%3A%20Kontrollstrukturen
http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FKeelestruktuurid
http://pl.wikibooks.org/wiki/C%2FInstrukcje%20steruj%C4%85ce
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FControle%20de%20fluxo
http://fi.wikibooks.org/wiki/C%2FOhjausrakenteet

17 Procedures and functions

In C programming, all executable code resides within a function. A function is a named
block of code that performs a task and then returns control to a caller. Note that other
programming languages may distinguish between a "function", "subroutine", "subprogram",
"procedure", or "method" -- in C, these are all functions.

A function is often executed (called) several times, from several different places, during a
single execution of the program. After finishing a subroutine, the program will branch back
(return) to the point after the call.

Functions are a powerful programming tool.

As a basic example, suppose you are writing code to print out the first 5 squares of numbers,
do some intermediate processing, then print the first 5 squares again. We could write it like
this:

#include <stdio.h>

int main(void)

{

int i;

for(i=1; i <= 5; i++)

{

printf("%d ", i*i);

}

for(i=1; i <= 5; i++)

{

printf("%d ", i*i);

}

return 0;

}

We have to write the same loop twice. We may want to somehow put this code in a separate
place and simply jump to this code when we want to use it. This would look like:

#include <stdio.h>

void Print_Squares(void)

{

int i;

for(i=1; i <=5; i++)

{

printf("%d ", i*i);

}

}

int main(void)

{

Print_Squares();

Print_Squares();

return 0;

}

97

Procedures and functions

This is precisely what functions are for.

17.1 More on functions

A function is like a black box. It takes in input, does something with it, then spits out an
answer.

Note that a function may not take any inputs at all, or it may not return anything at all.
In the above example, if we were to make a function of that loop, we may not need any
inputs, and we aren't returning anything at all (Text output doesn't count - when we speak
of returning we mean to say meaningful data that the program can use).

We have some terminology to refer to functions:

• A function, call it f, that uses another function g, is said to call g. For example, f calls g
to print the squares of ten numbers.

• A function's inputs are known as its arguments
• A function g that gives some kind of answer back to f is said to return that answer. For

example, g returns the sum of its arguments.

17.2 Writing functions in C

It's always good to learn by example. Let's write a function that will return the square of
a number.

int square(int x)

{

int square_of_x;

square_of_x = x * x;

return square_of_x;

}

To understand how to write such a function like this, it may help to look at what this
function does as a whole. It takes in an int, x, and squares it, storing it in the variable
square_of_x. Now this value is returned.

The first int at the beginning of the function declaration is the type of data that the function
returns. In this case when we square an integer we get an integer, and we are returning this
integer, and so we write int as the return type.

Next is the name of the function. It is good practice to use meaningful and descriptive
names for functions you may write. It may help to name the function after what it is
written to do. In this case we name the function "square", because that's what it does - it
squares a number.

Next is the function's first and only argument, an int, which will be referred to in the
function as x. This is the function's input.

In between the braces is the actual guts of the function. It declares an integer variable
called square_of_x that will be used to hold the value of the square of x. Note that the

98

Writing functions in C

variable square_of_x can only be used within this function, and not outside. We'll learn
more about this sort of thing later, and we will see that this property is very useful.

We then assign x multiplied by x, or x squared, to the variable square_of_x, which is what
this function is all about. Following this is a return statement. We want to return the value
of the square of x, so we must say that this function returns the contents of the variable
square_of_x.

Our brace to close, and we have finished the declaration.

Written in a more concise manner, this code performs exactly the same function as the
above:

int square(int x)

{

return x * x;

}

Note this should look familiar - you have been writing functions already, in fact - main is a
function that is always written.

17.2.1 In general

In general, if we want to declare a function, we write

type name(type1 arg1, type2 arg2, ...)

{

/* code */

}

We've previously said that a function can take no arguments, or can return nothing, or
both. What do we write if we want the function to return nothing? We use C's void

keyword. void basically means "nothing" - so if we want to write a function that returns
nothing, for example, we write

void sayhello(int number_of_times)

{

int i;

for(i=1; i <= number_of_times; i++) {

printf("Hello!\n'''");

}

}

Notice that there is no return statement in the function above. Since there's none, we
write void as the return type. (Actually, one can use the return keyword in a procedure
to return to the caller before the end of the procedure, but one cannot return a value as if
it were a function.)

What about a function that takes no arguments? If we want to do this, we can write for
example

float calculate_number(void)

{

float to_return=1;

99

Procedures and functions

int i;

for(i=0; i < 100; i++) {

to_return += 1;

to_return = 1/to_return;

}

return to_return;

}

Notice this function doesn't take any inputs, but merely returns a number calculated by
this function.

Naturally, you can combine both void return and void in arguments together to get a valid
function, also.

17.2.2 Recursion

Here's a simple function that does an infinite loop. It prints a line and calls itself, which
again prints a line and calls itself again, and this continues until the stack overflows and the
program crashes. A function calling itself is called recursion, and normally you will have a
conditional that would stop the recursion after a small, finite number of steps.

// don't run this!

void infinite_recursion()

{

printf("Infinite loop!\n");

infinite_recursion();

}

A simple check can be done like this. Note that ++depth is used so the increment will take
place before the value is passed into the function. Alternatively you can increment on a
separate line before the recursion call. If you say print_me(3,0); the function will print the
line Recursion 3 times.

void print_me(int j, int depth)

{

if(depth < j) {

printf("Recursion! depth = %d j = %d\n",depth,j); //j keeps its value

print_me(j, ++depth);

}

}

Recursion is most often used for jobs such as directory tree scans, seeking for the end of
a linked list, parsing a tree structure in a database and factorising numbers (and finding
primes) among other things.

17.2.3 Static functions

If a function is to be called only from within the file in which it is declared, it is appropriate
to declare it as a static function. When a function is declared static, the compiler will now
compile to an object file in a way that prevents the function from being called from code
in other files. Example:

static int compare(int a, int b)

{

100

Using C functions

return (a+4 < b)? a : b;

}

17.3 Using C functions

We can now write functions, but how do we use them? When we write main, we place the
function outside the braces that encompass main.

When we want to use that function, say, using our calculate_number function above, we
can write something like

float f;

f = calculate_number();

If a function takes in arguments, we can write something like

int square_of_10;

square_of_10 = square(10);

If a function doesn't return anything, we can just say

say_hello();

since we don't need a variable to catch its return value.

17.4 Functions from the C Standard Library

While the C language doesn't itself contain functions, it is usually linked with the C Stan-
dard Library. To use this library, you need to add an #include directive at the top of the
C file, which may be one of the following:

101

Procedures and functions

• <assert.h>1

• <ctype.h>2

• <errno.h>3

• <float.h>4

• <limits.h>5

• <locale.h>6

• <math.h>7

• <setjmp.h>8

• <signal.h>9

• <stdarg.h>10

• <stddef.h>11

• <stdio.h>12

• <stdlib.h>13

• <string.h>14

• <time.h>15

•
<complex.h>16

The functions available are:

<assert.h> <limits.h> <signal.h> <stdlib.h>

1 http://en.wikipedia.org/wiki/Assert.h

2 http://en.wikipedia.org/wiki/Ctype.h

3 http://en.wikipedia.org/wiki/Errno.h

4 http://en.wikipedia.org/wiki/Float.h

5 http://en.wikipedia.org/wiki/Limits.h

6 http://en.wikipedia.org/wiki/Locale.h

7 http://en.wikipedia.org/wiki/Math.h

8 http://en.wikipedia.org/wiki/Setjmp.h

9 http://en.wikipedia.org/wiki/Signal.h

10 http://en.wikipedia.org/wiki/Stdarg.h

11 http://en.wikipedia.org/wiki/Stddef.h

12 http://en.wikipedia.org/wiki/Stdio.h

13 http://en.wikipedia.org/wiki/Stdlib.h

14 http://en.wikipedia.org/wiki/String.h

15 http://en.wikipedia.org/wiki/Time.h

16 http://en.wikipedia.org/wiki/Complex.h

102

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Complex.h

Functions from the C Standard Library

<assert.h> <limits.h> <signal.h> <stdlib.h>

• assert(int) • (constants
only)

• int raise(int
sig). This

• void* sig-
nal(int sig, void
(*func)(int))

• atof(char*),
atoi(char*),
atol(char*)

• strtod(char *
str, char **
endptr), str-
tol(char *str,
char **endptr),
strtoul(char
*str, char
**endptr)

• rand(), srand()
• malloc(size_t),

calloc (size_t
elements,
size_t ele-
mentSize), real-
loc(void*, int)

• free (void*)
• exit(int),

abort()
• atexit(void

(*func)())
• getenv
• system
• qsort(void *,

size_t num-
ber, size_t
size, int (*sort-
func)(void*,
void*))

• abs, labs
• div, ldiv

<ctype.h> <locale.h> <stdarg.h> <string.h>

103

Procedures and functions

<assert.h> <limits.h> <signal.h> <stdlib.h>

• isalnum, isal-
pha, isblank

• iscntrl, isdigit,
isgraph

• islower, isprint,
ispunct

• isspace, isup-
per, isxdigit

• tolower, toup-
per

• struct lconv*
locale-
conv(void);

• char* setlo-
cale(int, const
char*);

• va_start
(va_list, ap)

• va_arg (ap,
(type))

• va_end (ap)
• va_copy

(va_list,
va_list)

• memcpy, mem-
move

• memchr, mem-
cmp, memset

• strcat, strncat,
strchr, strrchr

• strcmp,
strncmp, str-
ccoll

• strcpy, strncpy
• strerror
• strlen
• strspn, strcspn
• strpbrk
• strstr
• strtok
• strxfrm

errno.h math.h stddef.h time.h

104

Functions from the C Standard Library

<assert.h> <limits.h> <signal.h> <stdlib.h>

• (errno) • sin, cos, tan
• asin, acos, atan,

atan2
• sinh, cosh, tanh
• ceil
• exp
• fabs
• floor
• fmod
• frexp
• ldexp
• log, log10
• modf
• pow
• sqrt

• offsetof macro • asctime (struct
tm* tmptr)

• clock_t clock()
• char*

ctime(const
time_t* timer)

• double diff-
time(time_t
timer2, time_t
timer1)

• struct tm*
gmtime(const
time_t* timer)

• struct tm* gm-
time_r(const
time_t* timer,
struct tm* re-
sult)

• struct tm* lo-
caltime(const
time_t* timer)

• time_t mk-
time(struct tm*
ptm)

• time_t
time(time_t*
timer)

• char * strp-
time(const
char* buf, const
char* format,
struct tm*
tptr)

• time_t
timegm(struct
tm *broken-
time)

float.h setjmp.h stdio.h

105

Procedures and functions

<assert.h> <limits.h> <signal.h> <stdlib.h>

• (constants) • int
setjmp(jmp_buf
env)

• void
longjmp(jmp_buf
env, int value)

• fclose
• fopen, freopen
• remove
• rename
• rewind
• tmpfile
• clearerr
• feof, ferror
• fflush
• fgetpos, fsetpos
• fgetc, fputc
• fgets, fputs
• ftell, fseek

• fread, fwrite
• getc, putc
• getchar,

putchar,
fputchar

• gets, puts
• printf, vprintf
• fprintf, vfprintf
• sprintf,

snprintf,
vsprintf, vs-
nprintf

• perror
• scanf, vscanf
• fscanf, vfscanf
• sscanf, vsscanf
• setbuf, setvbuf
• tmpnam
• ungetc

• /printf/17

• full list18

17.5 Variable-length argument lists

Functions with variable-length argument lists are functions that can take a varying number
of arguments. An example in the C standard library is the printf function, which can take
any number of arguments depending on how the programmer wants to use it.

C programmers rarely find the need to write new functions with variable-length arguments.
If they want to pass a bunch of things to a function, they typically define a structure to
hold all those things -- perhaps a linked list, or an array -- and call that function with the
data in the arguments.

However, you may occasionally find the need to write a new function that supports a
variable-length argument list. To create a function that can accept a variable-length argu-
ment list, you must first include the standard library header stdarg.h. Next, declare the
function as you would normally. Next, add as the last argument an ellipsis ("..."). This
indicates to the compiler that a variable list of arguments is to follow. For example, the
following function declaration is for a function that returns the average of a list of numbers:

float average (int n_args, ...);

17 http://en.wikibooks.org/wiki/%2Fprintf%2F

18 http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#ctype.h

106

http://en.wikibooks.org/wiki/%2Fprintf%2F
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#ctype.h

Variable-length argument lists

Note that because of the way variable-length arguments work, we must somehow, in the
arguments, specify the number of elements in the variable-length part of the arguments. In
the average function here, it's done through an argument called n_args. In the printf

function, it's done with the format codes that you specify in that first string in the arguments
you provide.

Now that the function has been declared as using variable-length arguments, we must next
write the code that does the actual work in the function. To access the numbers stored in
the variable-length argument list for our average function, we must first declare a variable
for the list itself:

va_list myList;

The va_list type is a type declared in the stdarg.h header that basically allows you to
keep track of your list. To start actually using myList, however, we must first assign it a
value. After all, simply declaring it by itself wouldn't do anything. To do this, we must call
va_start, which is actually a macro defined in stdarg.h. In the arguments to va_start,
you must provide the va_list variable you plan on using, as well as the name of the last
variable appearing before the ellipsis in your function declaration:

#include <stdarg.h>

float average (int n_args, ...)

{

va_list myList;

va_start (myList, n_args);

va_end (myList);

}

Now that myList has been prepped for usage, we can finally start accessing the variables
stored in it. To do so, use the va_arg macro, which pops off the next argument on the
list. In the arguments to va_arg, provide the va_list variable you're using, as well as the
primitive data type (e.g. int, char) that the variable you're accessing should be:

#include <stdarg.h>

float average (int n_args, ...)

{

va_list myList;

va_start (myList, n_args);

int myNumber = va_arg (myList, int);

va_end (myList);

}

By popping n_args integers off of the variable-length argument list, we can manage to find
the average of the numbers:

#include <stdarg.h>

float average (int n_args, ...)

{

va_list myList;

va_start (myList, n_args);

int numbersAdded = 0;

int sum = 0;

while (numbersAdded < n_args) {

int number = va_arg (myList, int); // Get next number from list

107

Procedures and functions

sum += number;

numbersAdded += 1;

}

va_end (myList);

float avg = (float)(sum) / (float)(numbersAdded); // Find the average

return avg;

}

By calling average (2, 10, 20), we get the average of 10 and 20, which is 15.

it:C/Blocchi e funzioni/Funzioni19 pl:C/Funkcje20

19 http://it.wikibooks.org/wiki/C%2FBlocchi%20e%20funzioni%2FFunzioni

20 http://pl.wikibooks.org/wiki/C%2FFunkcje

108

http://it.wikibooks.org/wiki/C%2FBlocchi%20e%20funzioni%2FFunzioni
http://pl.wikibooks.org/wiki/C%2FFunkcje

18 Preprocessor

Preprocessors are a way of making text processing with your C program before they are
actually compiled. Before the actual compilation of every C program it is passed through
a Preprocessor. The Preprocessor looks through the program trying to find out specific in-
structions called Preprocessor directives that it can understand. All Preprocessor directives
begin with the # (hash) symbol. C++ compilers use the same C preprocessor.1

The preprocessor2 is a part of the compiler which performs preliminary operations (con-
ditionally compiling code, including files etc...) to your code before the compiler sees it.
These transformations are lexical, meaning that the output of the preprocessor is still text.

NOTE: Technically the output of the preprocessing phase for C consists of a sequence
of tokens, rather than source text, but it is simple to output source text which is
equivalent to the given token sequence, and that is commonly supported by compilers
via a -E or /E option -- although command line options to C compilers aren't com-
pletely standard, many follow similar rules.

18.1 Directives

Directives are special instructions directed to the preprocessor (preprocessor directive) or to
the compiler3 (compiler directive) on how it should process part or all of your source code
or set some flags on the final object and are used to make writing source code easier (more
portable for instance) and to make the source code more understandable. Directives are
handled by the preprocessor, which is either a separate program invoked by the compiler
or part of the compiler itself.

18.1.1 #include

C has some features as part of the language and some others as part of a standard library,
which is a repository of code that is available alongside every standard-conformant C com-
piler. When the C compiler compiles your program it usually also links it with the standard
C library. For example, on encountering a #include <stdio.h> directive, it replaces the
directive with the contents of the stdio.h header file.

1 Understanding C++/C Preprocessor ˆ{http://en.wikibooks.org/wiki/Understanding%20C%2B%2B%

2FC%20Preprocessor}

2 http://en.wikipedia.org/wiki/Preprocessor

3 http://en.wikipedia.org/wiki/compiler

109

http://en.wikibooks.org/wiki/Understanding%20C%2B%2B%2FC%20Preprocessor
http://en.wikibooks.org/wiki/Understanding%20C%2B%2B%2FC%20Preprocessor
http://en.wikipedia.org/wiki/Preprocessor
http://en.wikipedia.org/wiki/compiler

Preprocessor

When you use features from the library, C requires you to declare what you would be us-
ing. The first line in the program is a preprocessing directive which should look like this:

#include <stdio.h>

The above line causes the C declarations which are in the stdio.h header4 to be included
for use in your program. Usually this is implemented by just inserting into your program
the contents of a header file called stdio.h, located in a system-dependent location. The
location of such files may be described in your compiler's documentation. A list of standard
C header files is listed below in the Headers table.

The stdio.h header contains various declarations for input/output (I/O) using an abstrac-
tion of I/O mechanisms called streams. For example there is an output stream object
called stdout which is used to output text to the standard output, which usually displays
the text on the computer screen.

If using angle brackets like the example above, the preprocessor is instructed to search for
the include file along the development environment path for the standard includes.

#include "other.h"

If you use quotation marks (" "), the preprocessor is expected to search in some additional,
usually user-defined, locations for the header file, and to fall back to the standard include
paths only if it is not found in those additional locations. It is common for this form to
include searching in the same directory as the file containing the #include directive.

NOTE: You should check the documentation of the development environment you are
using for any vendor specific implementations of the #include directive.

Headers

The C90 standard headers list:

4 http://en.wikipedia.org/wiki/Header%20file

110

http://en.wikipedia.org/wiki/Header%20file

Directives

* <assert.h>5*
<ctype.h>6*
<errno.h>7*
<float.h>8*
<limits.h>9

* <locale.h>10*
<math.h>11*
<setjmp.h>12*
<signal.h>13*
<stdarg.h>14

* <stddef.h>15*
<stdio.h>16*
<stdlib.h>17*
<string.h>18*
<time.h>19

Headers added since C90:

* <complex.h>20*
<fenv.h>21*
<inttypes.h>22

* <iso646.h>23*
<stdbool.h>24*
<stdint.h>25

* <tgmath.h>26*
<wchar.h>27*
<wctype.h>28

18.1.2 #pragma

The pragma (pragmatic information) directive is part of the standard, but the meaning
of any pragma depends on the software implementation of the standard that is used. The
#pragma directive provides a way to request special behavior from the compiler. This
directive is most useful for programs that are unusually large or that need to take advantage
of the capabilities of a particular compiler.

Pragmas are used within the source program.

#pragma token(s)

5 http://en.wikipedia.org/wiki/Assert.h

6 http://en.wikipedia.org/wiki/Ctype.h

7 http://en.wikipedia.org/wiki/Errno.h

8 http://en.wikipedia.org/wiki/Float.h

9 http://en.wikipedia.org/wiki/Limits.h

10 http://en.wikipedia.org/wiki/Locale.h

11 http://en.wikipedia.org/wiki/Math.h

12 http://en.wikipedia.org/wiki/Setjmp.h

13 http://en.wikipedia.org/wiki/Signal.h

14 http://en.wikipedia.org/wiki/Stdarg.h

15 http://en.wikipedia.org/wiki/Stddef.h

16 http://en.wikipedia.org/wiki/Stdio.h

17 http://en.wikipedia.org/wiki/Stdlib.h

18 http://en.wikipedia.org/wiki/String.h

19 http://en.wikipedia.org/wiki/Time.h

20 http://en.wikipedia.org/wiki/Complex.h

21 http://en.wikipedia.org/wiki/Fenv.h

22 http://en.wikipedia.org/wiki/Inttypes.h

23 http://en.wikipedia.org/wiki/Iso646.h

24 http://en.wikipedia.org/wiki/Stdbool.h

25 http://en.wikipedia.org/wiki/Stdint.h

26 http://en.wikipedia.org/wiki/Tgmath.h

27 http://en.wikipedia.org/wiki/Wchar.h

28 http://en.wikipedia.org/wiki/Wctype.h

111

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Complex.h
http://en.wikipedia.org/wiki/Fenv.h
http://en.wikipedia.org/wiki/Inttypes.h
http://en.wikipedia.org/wiki/Iso646.h
http://en.wikipedia.org/wiki/Stdbool.h
http://en.wikipedia.org/wiki/Stdint.h
http://en.wikipedia.org/wiki/Tgmath.h
http://en.wikipedia.org/wiki/Wchar.h
http://en.wikipedia.org/wiki/Wctype.h

Preprocessor

1. pragma is usually followed by a single token, which represents a command for the
compiler to obey. You should check the software implementation of the C standard
you intend on using for a list of the supported tokens. Not surprisingly, the set of
commands that can appear in #pragma directives is different for each compiler; you'll
have to consult the documentation for your compiler to see which commands it allows
and what those commands do.

For instance one of the most implemented preprocessor directives, #pragma once when
placed at the beginning of a header file, indicates that the file where it resides will be
skipped if included several times by the preprocessor.

NOTE: Other methods exist to do this action that is commonly referred as using in-
clude guards.

18.1.3 #define

WARNING: Preprocessor macros, although tempting, can produce quite unexpected
results if not done right. Always keep in mind that macros are textual substitutions
done to your source code before anything is compiled. The compiler does not know
anything about the macros and never gets to see them. This can produce obscure
errors, amongst other negative effects. Prefer to use language features, if there are
equivalent (In example use const int or enum instead of #defined constants).That
said, there are cases, where macros are very useful (see the debug macro below for an
example).

The #define directive is used to define values or macros that are used by the preprocessor to
manipulate the program source code before it is compiled. Because preprocessor definitions
are substituted before the compiler acts on the source code, any errors that are introduced
by #define are difficult to trace.

By convention, values defined using #define are named in uppercase. Although doing so
is not a requirement, it is considered very bad practice to do otherwise. This allows the
values to be easily identified when reading the source code.

Today, #define is primarily used to handle compiler and platform differences. E.g., a
define might hold a constant which is the appropriate error code for a system call. The
use of #define should thus be limited unless absolutely necessary; typedef statements and
constant variables can often perform the same functions more safely.

Another feature of the #define command is that it can take arguments, making it rather
useful as a pseudo-function creator. Consider the following code:

#define ABSOLUTE_VALUE(x) (((x) < 0) ? -(x) : (x))

...

int x = -1;

112

Directives

while(ABSOLUTE_VALUE(x)) {

...

}

It's generally a good idea to use extra parentheses when using complex macros. Notice that
in the above example, the variable "x" is always within its own set of parentheses. This
way, it will be evaluated in whole, before being compared to 0 or multiplied by -1. Also,
the entire macro is surrounded by parentheses, to prevent it from being contaminated by
other code. If you're not careful, you run the risk of having the compiler misinterpret your
code.

Because of side-effects it is considered a very bad idea to use macro functions as described
above.

int x = -10;

int y = ABSOLUTE_VALUE(x++);

If ABSOLUTE_VALUE() were a real function 'x' would now have the value of '-9', but
because it was an argument in a macro it was expanded twice and thus has a value of -8.

Example:To illustrate the dangers of macros, consider this naive macro #define
MAX(a,b) a>b?a:band the code i = MAX(2,3)+5; j = MAX(3,2)+5;Take a look
at this and consider what the value after execution might be. The statements
are turned into int i = 2>3?2:3+5; int j = 3>2?3:2+5;Thus, after execution
i=8 and j=3 instead of the expected result of i=j=8! This is why you were cau-
tioned to use an extra set of parenthesis above, but even with these, the road is
fraught with dangers. The alert reader might quickly realize that if a or b con-
tains expressions, the definition must parenthesize every use of a,b in the macro
definition, like this: #define MAX(a,b) ((a)>(b)?(a):(b))This works, provided
a,b have no side effects. Indeed, i = 2; j = 3; k = MAX(i++, j++);would re-
sult in k=4, i=3 and j=5. This would be highly surprising to anyone expecting
MAX() to behave like a function.So what is the correct solution? The solution is
not to use macro at all. A global, inline function, like this inline int max(int a,
int b) { return a>b?a:b }has none of the pitfalls above, but will not work with all

types.

NOTE: The explicit inline declaration is not really necessary unless the defini-
tion is in a header file, since your compiler can inline functions for you (with gcc
this can be done with -finline-functions or -O3). The compiler is often better
than the programmer at predicting which functions are worth inlining. Also, func-
tion calls are not really expensive (they used to be). The compiler is actually free
to ignore the inline keyword. It is only a hint (except that inline is necessary in
order to allow a function to be defined in a header file without generating an error
message due to the function being defined in more than one translation unit).

(#, ##)

The # and ## operators are used with the #define macro. Using # causes the first
argument after the # to be returned as a string in quotes. For example, the command

113

Preprocessor

#define as_string(s) # s

will make the compiler turn this command

puts(as_string(Hello World!)) ;

into

puts("Hello World!");

Using ## concatenates what's before the ## with what's after it. For example, the
command

#define concatenate(x, y) x ## y

...

int xy = 10;

...

will make the compiler turn

printf("%d", concatenate(x, y));

into

printf("%d", xy);

which will, of course, display 10 to standard output.

It is possible to concatenate a macro argument with a constant prefix or suffix to obtain a
valid identifier as in

#define make_function(name) int my_ ## name (int foo) {}

make_function(bar)

which will define a function called my_bar(). But it isn't possible to integrate a macro
argument into a constant string using the concatenation operator. In order to obtain
such an effect, one can use the ANSI C property that two or more consecutive string
constants are considered equivalent to a single string constant when encountered. Using
this property, one can write

#define eat(what) puts("I'm eating " #what " today.")

eat(fruit)

114

Directives

which the macro-processor will turn into

puts("I'm eating " "fruit" " today.")

which in turn will be interpreted by the C parser as a single string constant.

The following trick can be used to turn a numeric constants into string literals

#define num2str(x) str(x)

#define str(x) #x

#define CONST 23

puts(num2str(CONST));

This is a bit tricky, since it is expanded in 2 steps. First num2str(CONST) is replaced with
str(23), which in turn is replaced with "23". This can be useful in the following example:

#ifdef DEBUG

#define debug(msg) fputs(__FILE__ ":" num2str(__LINE__) " - " msg, stderr)

#else

#define debug(msg)

#endif

This will give you a nice debug message including the file and the line where the message
was issued. If DEBUG is not defined however the debugging message will completely vanish
from your code. Be careful not to use this sort of construct with anything that has side
effects, since this can lead to bugs, that appear and disappear depending on the compilation
parameters.

18.1.4 macros

Macros aren't type-checked and so they do not evaluate arguments. Also, they do not obey
scope properly, but simply take the string passed to them and replace each occurrence of
the macro argument in the text of the macro with the actual string for that parameter (the
code is literally copied into the location it was called from).

An example on how to use a macro:

#include <stdio.h>

#define SLICES 8

#define ADD(x) ((x) / SLICES)

int main()

{

int a = 0, b = 10, c = 6;

a = ADD(b + c);

printf("%d\n", a);

return 0;

}

115

Preprocessor

-- the result of "a" should be "2" (b + c = 16 -> passed to ADD -> 16 / SLICES -> result
is "2")

NOTE:
It is usually bad practice to define macros in headers.A macro should be defined only
when it is not possible to achieve the same result with a function or some other mech-
anism. Some compilers are able to optimize code to where calls to small functions
are replaced with inline code, negating any possible speed advantage.Using typedefs,
enums, and inline (in C99) is often a better option.

One of the few situations where inline functions won't work -- so you are pretty much
forced to use function-like macros instead -- is to initialize compile time constants (static
initialization of structs). This happens when the arguments to the macro are literals that
the compiler can optimize to another literal. 29

18.1.5 #error

The #error directive halts compilation. When one is encountered the standard specifies
that the compiler should emit a diagnostic containing the remaining tokens in the directive.
This is mostly used for debugging purposes.

#error message

18.1.6 #warning

Many compilers support a #warning directive. When one is encountered, the compiler
emits a diagnostic containing the remaining tokens in the directive.

1. warning message

18.1.7 #undef

The #undef directive undefines a macro. The identifier need not have been previously
defined.

18.1.8 #if,#else,#elif,#endif (conditionals)

The #if command checks whether a controlling conditional expression evaluates to zero or
nonzero, and excludes or includes a block of code respectively. For example:

#if 1

29 David Hart, Jon Reid. "9 Code Smells of Preprocessor Use" ˆ{http://qualitycoding.org/

preprocessor/} . 2012.

116

http://qualitycoding.org/preprocessor/
http://qualitycoding.org/preprocessor/

Directives

/* This block will be included */

#endif

#if 0

/* This block will not be included */

#endif

The conditional expression could contain any C operator except for the assignment op-
erators, the increment and decrement operators, the address-of operator, and the sizeof
operator.

One unique operator used in preprocessing and nowhere else is the defined operator. It
returns 1 if the macro name, optionally enclosed in parentheses, is currently defined; 0 if
not.

The #endif command ends a block started by #if, #ifdef, or #ifndef.

The #elif command is similar to #if, except that it is used to extract one from a series of
blocks of code. E.g.:

#if /* some expression */

:

:

:

#elif /* another expression */

:

/* imagine many more #elifs here ... */

:

#else

/* The optional #else block is selected if none of the previous #if or

#elif blocks are selected */

:

:

#endif /* The end of the #if block */

18.1.9 #ifdef,#ifndef

The #ifdef command is similar to #if, except that the code block following it is selected
if a macro name is defined. In this respect,

#ifdef NAME

is equivalent to

#if defined NAME

The #ifndef command is similar to #ifdef, except that the test is reversed:

#ifndef NAME

is equivalent to

117

Preprocessor

#if !defined NAME

18.2 Useful Preprocessor Macros for Debugging

ANSI C defines some useful preprocessor macros and variables,3031 also called "magic con-
stants", include:

__FILE__ => The name of the current file, as a string literal

__LINE__ => Current line of the source file, as a numeric literal

__DATE__ => Current system date, as a string

__TIME__ => Current system time, as a string

__TIMESTAMP__ => Date and time (non-standard)

__cplusplus => undefined when your C code is being compiled by a C compiler; 199711L
when your C code is being compiled by a C++ compiler compliant with 1998 C++
standard.

__func__ => Current function name of the source file, as a string (part of C99)

__PRETTY_FUNCTION__ => "decorated" Current function name of the source file,
as a string (in GCC; non-standard)

Compile-time assertions

Some people32 define a preprocessor macro to allow compile-time assertions, something like:

#define COMPILE_TIME_ASSERT(pred) switch(0){case 0:case pred:;}

COMPILE_TIME_ASSERT(BOOLEAN CONDITION);

30 HP C Compiler Reference Manual ˆ{http://docs.hp.com/en/B3901-90003/ch07s04.html}

31 C++ reference: Predefined preprocessor variables ˆ{http://www.cppreference.com/wiki/

preprocessor/preprocessor_vars}

32 "Compile Time Assertions in C" ˆ{http://www.jaggersoft.com/pubs/CVu11_3.html} by Jon Jagger
1999

118

http://docs.hp.com/en/B3901-90003/ch07s04.html
http://www.cppreference.com/wiki/preprocessor/preprocessor_vars
http://www.cppreference.com/wiki/preprocessor/preprocessor_vars
http://www.jaggersoft.com/pubs/CVu11_3.html

Useful Preprocessor Macros for Debugging

The static_assert.hpp Boost library33 defines a similar macro. Some compilers define a
static_assert keyword used in the same way.34

Such compile-time assertions can help you debug faster than using only run-time assert()
statements, because the compile-time assertions are all tested at compile time, while it is
possible that a test run of a program may fail to exercise some run-time assert() statements.

X-Macros

One little-known usage pattern of the C preprocessor is known as "X-Macros".35363738 An
X-Macro is a header file39 or macro. Commonly these use the extension ".def" instead of
the traditional ".h". This file contains a list of similar macro calls, which can be referred
to as "component macros". The include file is then referenced repeatedly in the following
pattern. Here, the include file is "xmacro.def" and it contains a list of component macros
of the style "foo(x, y, z)".

#define foo(x, y, z) doSomethingWith(x, y, z);

#include "xmacro.def"

#undef foo

#define foo(x, y, z) doSomethingElseWith(x, y, z);

#include "xmacro.def"

#undef foo

(etc...)

The most common usage of X-Macros is to establish a list of C objects and then automati-
cally generate code for each of them. Some implementations also perform any #undefs they
need inside the X-Macro, as opposed to expecting the caller to undefine them.

33 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FLibraries%2FBoost%20

34 Wikipedia: C++0x#Static assertions ˆ{http://en.wikipedia.org/wiki/%20C%2B%2B0x%23Static%

20assertions}

35 Wirzenius, Lars. C Preprocessor Trick For Implementing Similar Data Types ˆ{http://liw.iki.fi/

liw/texts/cpp-trick.html} Retrieved January 9, 2011.
36 Randy Meyers . The New C: X Macros The New C: X Macros ˆ{www.ddj.com/cpp/184401387} .

Dr. Dobb's Journal , May 2001

37 Beal

| first = Stephan

| month = August

| year = 2004

| title = Supermacros

| url = http://wanderinghorse.net/computing/papers/#supermacros

| accessdate = 27 October 2008

. . ,
38 Keith Schwarz. "Advanced Preprocessor Techniques" ˆ{http://www.keithschwarz.com/cs106l/

spring2009/handouts/080_Preprocessor_2.pdf} . 2009. Includes "Practical Applications of the Pre-
processor II: The X Macro Trick".

39
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%E2%80%8E%2FProgramming%

20Languages%E2%80%8E%2FC%2B%2B%E2%80%8E%2FCode%2FFile%20Organization%23.h

119

http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FLibraries%2FBoost%20
http://en.wikipedia.org/wiki/%20C%2B%2B0x%23Static%20assertions
http://en.wikipedia.org/wiki/%20C%2B%2B0x%23Static%20assertions
http://liw.iki.fi/liw/texts/cpp-trick.html
http://liw.iki.fi/liw/texts/cpp-trick.html
 www.ddj.com/cpp/184401387
http://www.keithschwarz.com/cs106l/spring2009/handouts/080_Preprocessor_2.pdf
http://www.keithschwarz.com/cs106l/spring2009/handouts/080_Preprocessor_2.pdf
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%E2%80%8E%2FProgramming%20Languages%E2%80%8E%2FC%2B%2B%E2%80%8E%2FCode%2FFile%20Organization%23.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%E2%80%8E%2FProgramming%20Languages%E2%80%8E%2FC%2B%2B%E2%80%8E%2FCode%2FFile%20Organization%23.h

Preprocessor

Common sets of objects are a set of global configuration settings, a set of members of a
struct40, a list of possible XML41 tags for converting an XML file to a quickly-traversable
tree, or the body of an enum42 declaration; other lists are possible.

Once the X-Macro has been processed to create the list of objects, the component macros
can be redefined to generate, for instance, accessor and/or mutator43 functions. Structure
serializing and deserializing44 are also commonly done.

Here is an example of an X-Macro that establishes a struct and automatically creates
serialize/deserialize functions. For simplicity, this example doesn't account for endianness
or buffer overflows.

File star.def:

EXPAND_EXPAND_STAR_MEMBER(x, int)

EXPAND_EXPAND_STAR_MEMBER(y, int)

EXPAND_EXPAND_STAR_MEMBER(z, int)

EXPAND_EXPAND_STAR_MEMBER(radius, double)

#undef EXPAND_EXPAND_STAR_MEMBER

File star_table.c:

typedef struct {

#define EXPAND_EXPAND_STAR_MEMBER(member, type) type member;

#include "star.def"

} starStruct;

void serialize_star(const starStruct *const star, unsigned char *buffer) {

#define EXPAND_EXPAND_STAR_MEMBER(member, type) \

memcpy(buffer, &(star->member), sizeof(star->member)); \

buffer += sizeof(star->member);

#include "star.def"

}

void deserialize_star(starStruct *const star, const unsigned char *buffer) {

#define EXPAND_EXPAND_STAR_MEMBER(member, type) \

memcpy(&(star->member), buffer, sizeof(star->member)); \

buffer += sizeof(star->member);

#include "star.def"

}

Handlers for individual data types may be created and accessed using token concatenation
("##") and quoting ("#") operators. For example, the following might be added to the above
code:

#define print_int(val) printf("%d", val)

#define print_double(val) printf("%g", val)

void print_star(const starStruct *const star) {

/* print_##type will be replaced with print_int or print_double */

#define EXPAND_EXPAND_STAR_MEMBER(member, type) \

printf("%s: ", #member); \

print_##type(star->member); \

printf("\n");

40 http://en.wikibooks.org/wiki/struct%20%28C%20programming%20language%29

41 http://en.wikibooks.org/wiki/XML

42 http://en.wikibooks.org/wiki/enumerated%20type

43 http://en.wikibooks.org/wiki/mutator%20method

44 http://en.wikibooks.org/wiki/serialization

120

http://en.wikibooks.org/wiki/struct%20%28C%20programming%20language%29
http://en.wikibooks.org/wiki/XML
http://en.wikibooks.org/wiki/enumerated%20type
http://en.wikibooks.org/wiki/mutator%20method
http://en.wikibooks.org/wiki/serialization

Useful Preprocessor Macros for Debugging

#include "star.def"

}

Note that in this example you can also avoid the creation of separate handler functions for
each datatype in this example by defining the print format for each supported type, with
the additional benefit of reducing the expansion code produced by this header file:

#define FORMAT_(type) FORMAT_##type

#define FORMAT_int "%d"

#define FORMAT_double "%g"

void print_star(const starStruct *const star) {

/* FORMAT_(type) will be replaced with FORMAT_int or FORMAT_double */

#define EXPAND_EXPAND_STAR_MEMBER(member, type) \

printf("%s: " FORMAT_(type) "\n", #member, star->member);

#include "star.def"

}

The creation of a separate header file can be avoided by creating a single macro containing
what would be the contents of the file. For instance, the above file "star.def" could be
replaced with this macro at the beginning of:

File star_table.c:

#define EXPAND_STAR \

EXPAND_STAR_MEMBER(x, int) \

EXPAND_STAR_MEMBER(y, int) \

EXPAND_STAR_MEMBER(z, int) \

EXPAND_STAR_MEMBER(radius, double)

and then all calls to #include "star.def" could be replaced with a simple EXPAND_STAR

statement. The rest of the above file would become:

typedef struct {

#define EXPAND_STAR_MEMBER(member, type) type member;

EXPAND_STAR

#undef EXPAND_STAR_MEMBER

} starStruct;

void serialize_star(const starStruct *const star, unsigned char *buffer) {

#define EXPAND_STAR_MEMBER(member, type) \

memcpy(buffer, &(star->member), sizeof(star->member)); \

buffer += sizeof(star->member);

EXPAND_STAR

#undef EXPAND_STAR_MEMBER

}

void deserialize_star(starStruct *const star, const unsigned char *buffer) {

#define EXPAND_STAR_MEMBER(member, type) \

memcpy(&(star->member), buffer, sizeof(star->member)); \

buffer += sizeof(star->member);

EXPAND_STAR

#undef EXPAND_STAR_MEMBER

}

and the print handler could be added as well as:

#define print_int(val) printf("%d", val)

#define print_double(val) printf("%g", val)

void print_star(const starStruct *const star) {

/* print_##type will be replaced with print_int or print_double */

121

Preprocessor

#define EXPAND_STAR_MEMBER(member, type) \

printf("%s: ", #member); \

print_##type(star->member); \

printf("\n");

EXPAND_STAR

#undef EXPAND_STAR_MEMBER

}

or as:

#define FORMAT_(type) FORMAT_##type

#define FORMAT_int "%d"

#define FORMAT_double "%g"

void print_star(const starStruct *const star) {

/* FORMAT_(type) will be replaced with FORMAT_int or FORMAT_double */

#define EXPAND_STAR_MEMBER(member, type) \

printf("%s: " FORMAT_(type) "\n", #member, star->member);

EXPAND_STAR

#undef EXPAND_STAR_MEMBER

}

A variant which avoids needing to know the members of any expanded sub-macros is to
accept the operators as an argument to the list macro:

File star_table.c:

/*

Generic

*/

#define STRUCT_MEMBER(member, type, dummy) type member;

#define SERIALIZE_MEMBER(member, type, obj, buffer) \

memcpy(buffer, &(obj->member), sizeof(obj->member)); \

buffer += sizeof(obj->member);

#define DESERIALIZE_MEMBER(member, type, obj, buffer) \

memcpy(&(obj->member), buffer, sizeof(obj->member)); \

buffer += sizeof(obj->member);

#define FORMAT_(type) FORMAT_##type

#define FORMAT_int "%d"

#define FORMAT_double "%g"

/* FORMAT_(type) will be replaced with FORMAT_int or FORMAT_double */

#define PRINT_MEMBER(member, type, obj) \

printf("%s: " FORMAT_(type) "\n", #member, obj->member);

/*

starStruct

*/

#define EXPAND_STAR(_, ...) \

_(x, int, __VA_ARGS__) \

_(y, int, __VA_ARGS__) \

_(z, int, __VA_ARGS__) \

_(radius, double, __VA_ARGS__)

typedef struct {

EXPAND_STAR(STRUCT_MEMBER,)

} starStruct;

void serialize_star(const starStruct *const star, unsigned char *buffer) {

EXPAND_STAR(SERIALIZE_MEMBER, star, buffer)

}

122

Useful Preprocessor Macros for Debugging

void deserialize_star(starStruct *const star, const unsigned char *buffer) {

EXPAND_STAR(DESERIALIZE_MEMBER, star, buffer)

}

void print_star(const starStruct *const star) {

EXPAND_STAR(PRINT_MEMBER, star)

}

This approach can be dangerous in that the entire macro set is always interpreted as if it
was on a single source line, which could encounter compiler limits with complex component
macros and/or long member lists.

This technique was reported by Lars Wirzenius45 in a web page dated January 17, 2000,
in which he gives credit to Kenneth Oksanen for "refining and developing" the technique
prior to 1997. The other references describe it as a method from at least a decade before
the turn of the century.

w:C preprocessor46

de:C-Programmierung: Präprozessor47 fr:Programmation C/Préprocesseur48

it:C/Compilatore e precompilatore/Direttive49 pl:C/Preprocesor50

45 Wirzenius, Lars. C Preprocessor Trick For Implementing Similar Data Types ˆ{http://liw.iki.fi/

liw/texts/cpp-trick.html} Retrieved January 9, 2011.
46 http://en.wikipedia.org/wiki/C%20preprocessor

47 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Pr%C3%A4prozessor

48 http://fr.wikibooks.org/wiki/Programmation%20C%2FPr%C3%A9processeur

49 http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FDirettive

50 http://pl.wikibooks.org/wiki/C%2FPreprocesor

123

http://liw.iki.fi/liw/texts/cpp-trick.html
http://liw.iki.fi/liw/texts/cpp-trick.html
http://en.wikipedia.org/wiki/C%20preprocessor
http://de.wikibooks.org/wiki/C-Programmierung%3A%20Pr%C3%A4prozessor
http://fr.wikibooks.org/wiki/Programmation%20C%2FPr%C3%A9processeur
http://it.wikibooks.org/wiki/C%2FCompilatore%20e%20precompilatore%2FDirettive
http://pl.wikibooks.org/wiki/C%2FPreprocesor

19 Libraries

A library in C is a group of functions and declarations, exposed for use by other programs.
The library therefore consists of an interface expressed in a .h file (named the "header") and
an implementation expressed in a .c file. This .c file might be precompiled or otherwise
inaccessible, or it might be available to the programmer. (Note: Libraries may call functions
in other libraries such as the Standard C or math libraries to do various tasks.)

The format of a library varies with the operating system and compiler one is using. For
example, in the Unix and Linux operating systems, a library consists of one or more object
files, which consist of object code that is usually the output of a compiler (if the source
language is C or something similar) or an assembler (if the source language is assembly
language). These object files are then turned into a library in the form of an archive by the
ar archiver (a program that takes files and stores them in a bigger file without regard to
compression). The filename for the library usually starts with "lib" and ends with ".a"; e.g.
the libc.a file contains the Standard C library and the "libm.a" the mathematics routines,
which the linker would then link in. Other operating systems such as Microsoft Windows
use a ".lib" extension for libraries and an ".obj" extension for object files.

We're going to use as an example a function to parse1 arguments from the command line.
Arguments on the command line could be by themselves:

-i

have an optional argument that is concatenated2 to the letter:

-ioptarg

or have the argument in a separate argv-element:

-i optarg

In order to parse all these types of arguments, we have written the following "getopt.c" file:

#include <stdio.h> /* for fprintf() and EOF */

#include <string.h> /* for strchr() */

#include "getopt.h" /* consistency check */

/* variables */

int opterr = 1; /* getopt prints errors if this is on */

1 http://en.wikipedia.org/wiki/Parsing

2 http://en.wikipedia.org/wiki/Concatenate

125

http://en.wikipedia.org/wiki/Parsing
http://en.wikipedia.org/wiki/Concatenate

Libraries

int optind = 1; /* token pointer */

int optopt; /* option character passed back to user */

char *optarg; /* flag argument (or value) */

/* function */

/* return option character, EOF if no more or ? if problem.

The arguments to the function:

argc, argv - the arguments to the main() function. An argument of "--"

stops the processing.

opts - a string containing the valid option characters.

an option character followed by a colon (:) indicates that

the option has a required argument.

*/

int

getopt (int argc, char **argv, char *opts)

{

static int sp = 1; /* character index into current token */

register char *cp; /* pointer into current token */

if (sp == 1)

{

/* check for more flag-like tokens */

if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')

return EOF;

else if (strcmp (argv[optind], "--") == 0)

{

optind++;

return EOF;

}

}

optopt = argv[optind][sp];

if (optopt == ':' || (cp = strchr (opts, optopt)) == NULL)

{

if (opterr)

fprintf (stderr, "%s: invalid option -- '%c'\n", argv[0], optopt);

/* if no characters left in this token, move to next token */

if (argv[optind][++sp] == '\0')

{

optind++;

sp = 1;

}

return '?';

}

if (*++cp == ':')

{

/* if a value is expected, get it */

if (argv[optind][sp + 1] != '\0')

/* flag value is rest of current token */

optarg = argv[optind++] + (sp + 1);

else if (++optind >= argc)

{

if (opterr)

fprintf (stderr, "%s: option requires an argument -- '%c'\n",

argv[0], optopt);

sp = 1;

return '?';

}

else

/* flag value is next token */

optarg = argv[optind++];

sp = 1;

}

else

126

What to put in header files

{

/* set up to look at next char in token, next time */

if (argv[optind][++sp] == '\0')

{

/* no more in current token, so setup next token */

sp = 1;

optind++;

}

optarg = 0;

}

return optopt;

}

/* END OF FILE */

The interface would be the following "getopt.h" file:

#ifndef GETOPT_H

#define GETOPT_H

/* exported variables */

extern int opterr, optind, optopt;

extern char *optarg;

/* exported function */

int getopt(int, char **, char *);

#endif

/* END OF FILE */

At a minimum, a programmer has the interface file to figure out how to use a library,
although, in general, the library programmer also wrote documentation on how to use the
library. In the above case, the documentation should say that the provided arguments
**argv and *opts both shouldn't be null pointers (or why would you be using the getopt

function anyway?). Specifically, it typically states what each parameter is for and what
return values can be expected in which conditions. Programmers that use a library, are
normally not interested in the implementation of the library -- unless the implementation
has a bug, in which case he would want to complain somehow.

Both the implementation of the getopts library, and programs that use the library should
state #include "getopt.h", in order to refer to the corresponding interface. Now the
library is "linked" to the program -- the one that contains the main() function. The program
may refer to dozens of interfaces.

In some cases, just placing #include "getopt.h" may appear correct but will still fail
to link properly. This indicates that the library is not installed correctly, or there may
be some additional configuration required. You will have to check either the compiler's
documentation or library's documentation on how to resolve this issue.

19.1 What to put in header files

As a general rule, headers contain anything that should be exported, or "seen" by the other
modules in a program. This includes macro definitions (preprocessor #defines); structure,
union, and enumeration declarations; typedef declarations; external function declarations;
and global variable declarations. In the above getopt.h example file, one function declara-
tion (getopt) and four global variables (optind, optopt, optarg, and opterr) are defined.

127

Libraries

The #ifndef GETOPT_H/#define GETOPT_H trick is colloquially called include guards.
This is used so that if the getopt.h file were included more than once in a translation unit,
the unit would only see the contents once.

19.2 Further reading

• C FAQ: "I'm wondering what to put in .c files and what to put in .h files. (What does
".h" mean, anyway?)"3

• PIClist thread: "Global variables in projects with many C files."4

pl:C/Biblioteki5

3 http://c-faq.com/cpp/hfiles.html

4
http://www.piclist.com/techref/postbot.asp?by=time&id=piclist\T1\textbackslash{}2007\

T1\textbackslash{}10\T1\textbackslash{}25\T1\textbackslash{}073430a&tgt=post
5 http://pl.wikibooks.org/wiki/C%2FBiblioteki

128

http://c-faq.com/cpp/hfiles.html
http://www.piclist.com/techref/postbot.asp?by=time&id=piclist\T1\textbackslash {}2007\T1\textbackslash {}10\T1\textbackslash {}25\T1\textbackslash {}073430a&tgt=post
http://www.piclist.com/techref/postbot.asp?by=time&id=piclist\T1\textbackslash {}2007\T1\textbackslash {}10\T1\textbackslash {}25\T1\textbackslash {}073430a&tgt=post
http://pl.wikibooks.org/wiki/C%2FBiblioteki

20 Standard libraries

The C standard library is a standardized collection of header files and library routines
used to implement common operations, such as input/output and character string handling.
Unlike other languages (such as COBOL, Fortran, and PL/I) C does not include builtin
keywords for these tasks, so nearly all C programs rely on the standard library to function.

20.1 History

The C programming language previously did not provide any elementary functionalities,
such as I/O operations. Over time, user communities of C shared ideas and implemen-
tations to provide that functionality. These ideas became common, and were eventually
incorporated into the definition of the standardized C programming language. These are
now called the C standard libraries.

Both Unix and C were created at AT&T's Bell Laboratories in the late 1960s and early
1970s. During the 1970s the C programming language became increasingly popular, with
many universities and organizations beginning to create their own variations of the language
for their own projects. By the start of the 1980s compatibility problems between the various
C implementations became apparent. In 1983 the American National Standards Institute
(ANSI) formed a committee to establish a standard specification of C known as "ANSI C".
This work culminated in the creation of the so-called C89 standard in 1989. Part of the
resulting standard was a set of software libraries called the ANSI C standard library.

Later revisions of the C standard have added several new required header files to the library.
Support for these new extensions varies between implementations.

The headers <iso646.h>, <wchar.h>, and <wctype.h> were added with Normative
Addendum 1 (hereafter abbreviated as NA1), an addition to the C Standard ratified in
1995.

The headers <complex.h>, <fenv.h>, <inttypes.h>, <stdbool.h>, <stdint.h>,
and <tgmath.h> were added with C99, a revision to the C Standard published in 1999.

Note:
The C++a programming language includes the functionality of the ANSI C 89 standard
library, but has made several modifications, such as placing all identifiers into the std

namespace and changing the names of the header files from <xxx.h> to <cxxx> (however,
the C-style names are still available, although deprecated).

a http://en.wikibooks.org/wiki/C%2B%2B

129

http://en.wikibooks.org/wiki/C%2B%2B

Standard libraries

20.2 Design

The declaration of each function is kept in a header file, while the actual implementation of
functions are separated into a library file. The naming and scope of headers have become
common but the organization of libraries still remains diverse. The standard library is
usually shipped along with a compiler. Since C compilers often provide extra functionalities
that are not specified in ANSI C, a standard library with a particular compiler is mostly
incompatible with standard libraries of other compilers.

Much of the C standard library has been shown to have been well-designed. A few parts,
with the benefit of hindsight, are regarded as mistakes. The string input functions gets()

(and the use of scanf() to read string input) are the source of many buffer overflows, and
most programming guides recommend avoiding this usage. Another oddity is strtok(), a
function that is designed as a primitive lexical analyser1 but is highly "fragile" and difficult
to use.

20.3 ANSI Standard

The ANSI C standard library consists of 24 C header files which can be included into a
programmer's project with a single directive. Each header file contains one or more function
declarations, data type definitions and macros. The contents of these header files follows.

In comparison to some other languages (for example Java) the standard library is minus-
cule. The library provides a basic set of mathematical functions, string manipulation, type
conversions, and file and console-based I/O. It does not include a standard set of "con-
tainer types" like the C++ Standard Template Library, let alone the complete graphical
user interface (GUI) toolkits, networking tools, and profusion of other functionality that
Java provides as standard. The main advantage of the small standard library is that pro-
viding a working ANSI C environment is much easier than it is with other languages, and
consequently porting C to a new platform is relatively easy.

Many other libraries have been developed to supply equivalent functionality to that provided
by other languages in their standard library. For instance, the GNOME desktop environ-
ment project has developed the GTK+ graphics toolkit and GLib, a library of container
data structures, and there are many other well-known examples. The variety of libraries
available has meant that some superior toolkits have proven themselves through history.
The considerable downside is that they often do not work particularly well together, pro-
grammers are often familiar with different sets of libraries, and a different set of them may
be available on any particular platform.

20.3.1 ANSI C library header files

<assert.h>2 Contains the assert macro, used to assist with detecting logical
errors and other types of bug in debugging versions of a program.

1 http://en.wikipedia.org/wiki/lexical%20analysis

2 http://en.wikipedia.org/wiki/Assert.h

130

http://en.wikipedia.org/wiki/lexical%20analysis
http://en.wikipedia.org/wiki/Assert.h

ANSI Standard

<com-
plex.h>3

A set of functions for manipulating complex numbers. (New with
C99)

<ctype.h>4 This header file contains functions used to classify characters by
their types or to convert between upper and lower case in a way
that is independent of the used character set (typically ASCII or
one of its extensions, although implementations utilizing EBCDIC
are also known).

<errno.h>5 For testing error codes reported by library functions.
<fenv.h>6 For controlling floating-point environment. (New with C99)
<float.h>7 Contains defined constants specifying the implementation-specific

properties of the floating-point library, such as the minimum differ-
ence between two different floating-point numbers (_EPSILON),
the maximum number of digits of accuracy (_DIG) and the range
of numbers which can be represented (_MIN, _MAX).

<int-
types.h>8

For precise conversion between integer types. (New with C99)

<iso646.h>9 For programming in ISO 646 variant character sets. (New with
NA1)

<limits.h>10 Contains defined constants specifying the implementation-specific
properties of the integer types, such as the range of numbers which
can be represented (_MIN, _MAX).

<locale.h>11 For setlocale() and related constants. This is used to choose an
appropriate locale.

<math.h>12 For computing common mathematical functions-- see ../Further
math/13 or C++ Programming/Code/Standard C Library/Math14

for details.
<setjmp.h>15 setjmp and longjmp, which are used for non-local exits
<signal.h>16 For controlling various exceptional conditions
<stdarg.h>17 For accessing a varying number of arguments passed to functions.
<std-
bool.h>18

For a boolean data type. (New with C99)

3 http://en.wikipedia.org/wiki/Complex.h

4 http://en.wikipedia.org/wiki/Ctype.h

5 http://en.wikipedia.org/wiki/Errno.h

6 http://en.wikipedia.org/wiki/Fenv.h

7 http://en.wikipedia.org/wiki/Float.h

8 http://en.wikipedia.org/wiki/Inttypes.h

9 http://en.wikipedia.org/wiki/Iso646.h

10 http://en.wikipedia.org/wiki/Limits.h

11 http://en.wikipedia.org/wiki/Locale.h

12 http://en.wikipedia.org/wiki/Math.h

13 Chapter 15 on page 73

14
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%

2FMath
15 http://en.wikipedia.org/wiki/Setjmp.h

16 http://en.wikipedia.org/wiki/Signal.h

17 http://en.wikipedia.org/wiki/Stdarg.h

18 http://en.wikipedia.org/wiki/Stdbool.h

131

http://en.wikipedia.org/wiki/Complex.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Fenv.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Inttypes.h
http://en.wikipedia.org/wiki/Iso646.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMath
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FStandard%20C%20Library%2FMath
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stdbool.h

Standard libraries

<stdint.h>19 For defining various integer types. (New with C99)
<std-
def.h>20

For defining several useful types and macros.

<stdio.h>21 Provides the core input and output capabilities of the C language.
This file includes the venerable printf function.

<stdlib.h>22 For performing a variety of operations, including conversion,
pseudo-random numbers, memory allocation, process control, en-
vironment, signalling, searching, and sorting.

<string.h>23 For manipulating several kinds of strings.
<tg-
math.h>24

For type-generic mathematical functions. (New with C99)

<time.h>25 For converting between various time and date formats.
<wchar.h>26 For manipulating wide streams and several kinds of strings using

wide characters - key to supporting a range of languages. (New
with NA1)

<wc-
type.h>27

For classifying wide characters. (New with NA1)

20.4 Common support libraries

While not standardized, C programs may depend on a runtime library of routines which
contain code the compiler uses at runtime. The code that initializes the process for the oper-
ating system, for example, before calling main(), is implemented in the C Run-Time Library
for a given vendor's compiler. The Run-Time Library code might help with other language
feature implementations, like handling uncaught exceptions or implementing floating point
code.

The C standard library only documents that the specific routines mentioned in this article
are available, and how they behave. Because the compiler implementation might depend
on these additional implementation-level functions to be available, it is likely the vendor-
specific routines are packaged with the C Standard Library in the same module, because
they're both likely to be needed by any program built with their toolset.

Though often confused with the C Standard Library because of this packaging, the C
Runtime Library is not a standardized part of the language and is vendor-specific.

19 http://en.wikipedia.org/wiki/Stdint.h

20 http://en.wikipedia.org/wiki/Stddef.h

21 http://en.wikipedia.org/wiki/Stdio.h

22 http://en.wikipedia.org/wiki/Stdlib.h

23 http://en.wikipedia.org/wiki/String.h

24 http://en.wikipedia.org/wiki/Tgmath.h

25 http://en.wikipedia.org/wiki/Time.h

26 http://en.wikipedia.org/wiki/Wchar.h

27 http://en.wikipedia.org/wiki/Wctype.h

132

http://en.wikipedia.org/wiki/Stdint.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Tgmath.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Wchar.h
http://en.wikipedia.org/wiki/Wctype.h

Compiler built-in functions

20.5 Compiler built-in functions

Some compilers (for example, GCC28) provide built-in versions of many of the functions
in the C standard library; that is, the implementations of the functions are written into
the compiled object file, and the program calls the built-in versions instead of the func-
tions in the C library shared object file. This reduces function call overhead, especially
if function calls are replaced with inline variants, and allows other forms of optimization
(as the compiler knows the control-flow characteristics of the built-in variants), but may
cause confusion when debugging (for example, the built-in versions cannot be replaced with
instrumented variants).

20.6 POSIX standard library

POSIX, (along with the Single Unix Specification), specifies a number of routines that
should be available over and above those in the C standard library proper; these are often
implemented alongside the C standard library functionality, with varying degrees of close-
ness. For example, glibc implements functions such as fork within libc.so, but before NPTL
was merged into glibc it constituted a separate library with its own linker flag. Often, this
POSIX-specified functionality will be regarded as part of the library; the C library proper
may be identified as the ANSI or ISO C library.

pl:C/Biblioteka standardowa29

28 http://en.wikipedia.org/wiki/GCC

29 http://pl.wikibooks.org/wiki/C%2FBiblioteka%20standardowa

133

http://en.wikipedia.org/wiki/GCC
http://pl.wikibooks.org/wiki/C%2FBiblioteka%20standardowa

21 File IO

21.1 Introduction

The stdio.h header declares a broad assortment of functions that perform input and output
to files and devices such as the console. It was one of the earliest headers to appear in the C
library. It declares more functions than any other standard header and also requires more
explanation because of the complex machinery that underlies the functions.

The device-independent model of input and output has seen dramatic improvement over
the years and has received little recognition for its success. FORTRAN II was touted as
a machine-independent language in the 1960s, yet it was essentially impossible to move a
FORTRAN program between architectures without some change. In FORTRAN II, you
named the device you were talking to right in the FORTRAN statement in the middle of
your FORTRAN code. So, you said READ INPUT TAPE 5 on a tape-oriented IBM 7090 but
READ CARD to read a card image on other machines. FORTRAN IV had more generic READ

and WRITE statements, specifying a logical unit number (LUN) instead of the device name.
The era of device-independent I/O had dawned.

Peripheral devices such as printers still had fairly strong notions about what they were asked
to do. And then, peripheral interchange utilities were invented to handle bizarre devices.
When cathode-ray tubes came onto the scene, each manufacturer of consoles solved problems
such as console cursor movement in an independent manner, causing further headaches.

It was into this atmosphere that Unix was born. Ken Thompson and Dennis Ritchie, the
developers of Unix, deserve credit for packing any number of bright ideas into the operating
system. Their approach to device independence was one of the brightest.

The ANSI C <stdio.h> library is based on the original Unix file I/O primitives but casts
a wider net to accommodate the least-common denominator across varied systems.

21.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives,
or whether to or from files supported on structured storage devices, are mapped into logical
data streams, whose properties are more uniform than their various inputs and outputs.
Two forms of mapping are supported: text streams and binary streams.

A text stream consists of one or more lines. A line in a text stream consists of zero or
more characters plus a terminating new-line character. (The only exception is that in some
implementations the last line of a file does not require a terminating new-line character.)
Unix adopted a standard internal format for all text streams. Each line of text is terminated

135

File IO

by a new-line character. That's what any program expects when it reads text, and that's
what any program produces when it writes text. (This is the most basic convention, and
if it doesn't meet the needs of a text-oriented peripheral attached to a Unix machine, then
the fix-up occurs out at the edges of the system. Nothing in between needs to change.) The
string of characters that go into, or come out of a text stream may have to be modified to
conform to specific conventions. This results in a possible difference between the data that
go into a text stream and the data that come out. For instance, in some implementations
when a space-character precedes a new-line character in the input, the space character gets
removed out of the output. In general, when the data only consists of printable characters
and control characters like horizontal tab and new-line, the input and output of a text
stream are equal.

Compared to a text stream, a binary stream is pretty straight forward. A binary stream
is an ordered sequence of characters that can transparently record internal data. Data
written to a binary stream shall always equal the data that gets read out under the same
implementation. Binary streams, however, may have an implementation-defined number of
null characters appended to the end of the stream. There are no further conventions which
need to be considered.

Nothing in Unix prevents the program from writing arbitrary 8-bit binary codes to any open
file, or reading them back unchanged from an adequate repository. Thus, Unix obliterated
the long-standing distinction between text streams and binary streams.

21.3 Standard Streams

When a C program starts its execution the program automatically opens three standard
streams named stdin, stdout, and stderr. These are attached for every C program.

The first standard stream is used for input buffering and the other two are used for output.
These streams are sequences of bytes.

Consider the following program:

/* An example program. */

int main()

{

int var;

scanf ("%d", &var); /* use stdin for scanning an integer from keyboard. */

printf ("%d", var); /* use stdout for printing a character. */

return 0;

}

/* end program. */

By default stdin points to the keyboard and stdout and stderr point to the screen. It is
possible under Unix and may be possible under other operating systems to redirect input
from or output to a file or both.

136

FILE pointers

21.4 FILE pointers

The <stdio.h> header contains a definition for a type FILE (usually via a typedef) which is
capable of processing all the information needed to exercise control over a stream, including
its file position indicator, a pointer to the associated buffer (if any), an error indicator that
records whether a read/write error has occurred, and an end-of-file indicator that records
whether the end of the file has been reached.

It is considered bad manners to access the contents of FILE directly unless the programmer
is writing an implementation of <stdio.h> and its contents. Better access to the contents
of FILE is provided via the functions in <stdio.h>. It can be said that the FILE type is an
early example of object-oriented programming1.

21.5 Opening and Closing Files

To open and close files, the <stdio.h> library has three functions: fopen, freopen, and
fclose.

21.5.1 Opening Files

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

FILE *freopen(const char *filename, const char *mode, FILE *stream);

fopen and freopen opens the file whose name is in the string pointed to by filename and
associates a stream with it. Both return a pointer to the object controlling the stream, or if
the open operation fails a null pointer. The error and end-of-file indicators are cleared, and
if the open operation fails error is set. freopen differs from fopen in that the file pointed
to by stream is closed first when already open and any close errors are ignored.

mode for both functions points to a string consisting of one of the following sequences:

r open a text file for reading

w truncate to zero length or create a text file for writing

a append; open or create text file for writing at end-of-file

rb open binary file for reading

wb truncate to zero length or create a binary file for writing

ab append; open or create binary file for writing at end-of-file

r+ open text file for update (reading and writing)

w+ truncate to zero length or create a text file for update

a+ append; open or create text file for update

r+b or rb+ open binary file for update (reading and writing)

w+b or wb+ truncate to zero length or create a binary file for update

a+b or ab+ append; open or create binary file for update

Opening a file with read mode ('r' as the first character in the mode argument) fails if the
file does not exist or cannot be read.

1 http://en.wikipedia.org/wiki/Object-oriented%20programming

137

http://en.wikipedia.org/wiki/Object-oriented%20programming

File IO

Opening a file with append mode ('a' as the first character in the mode argument) causes
all subsequent writes to the file to be forced to the then-current end-of-file, regardless of
intervening calls to the fseek function. In some implementations, opening a binary file
with append mode ('b' as the second or third character in the above list of mode arguments)
may initially position the file position indicator for the stream beyond the last data written,
because of null character padding.

When a file is opened with update mode ('+' as the second or third character in the above
list of mode argument values), both input and output may be performed on the associated
stream. However, output may not be directly followed by input without an intervening call
to the fflush function or to a file positioning function (fseek, fsetpos, or rewind), and
input may not be directly followed by output without an intervening call to a file positioning
function, unless the input operation encounters end-of-file. Opening (or creating) a text file
with update mode may instead open (or create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to
an interactive device.

21.5.2 Closing Files

#include <stdio.h>

int fclose(FILE *stream);

The fclose function causes the stream pointed to by stream to be flushed and the asso-
ciated file to be closed. Any unwritten buffered data for the stream are delivered to the
host environment to be written to the file; any unread buffered data are discarded. The
stream is disassociated from the file. If the associated buffer was automatically allocated,
it is deallocated. The function returns zero if the stream was successfully closed or EOF if
any errors were detected.

21.6 Other file access functions

21.6.1 The fflush function

#include <stdio.h>

int fflush(FILE *stream);

If stream points to an output stream or an update stream in which the most recent operation
was not input, the fflush function causes any unwritten data for that stream to be deferred
to the host environment to be written to the file. The behavior of fflush is undefined for
input stream.

If stream is a null pointer, the fflush function performs this flushing action on all streams
for which the behavior is defined above.

The fflush functions returns EOF if a write error occurs, otherwise zero.

The reason for having a fflush function is because streams in C can have buffered in-
put/output; that is, functions that write to a file actually write to a buffer inside the FILE

138

Functions that Modify the File Position Indicator

structure. If the buffer is filled to capacity, the write functions will call fflush to actually
"write" the data that is in the buffer to the file. Because fflush is only called every once
in a while, calls to the operating system to do a raw write are minimized.

21.6.2 The setbuf function

#include <stdio.h>

void setbuf(FILE *stream, char *buf);

Except that it returns no value, the setbuf function is equivalent to the setvbuf function
invoked with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer)
with the value _IONBF for mode.

21.6.3 The setvbuf function

#include <stdio.h>

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

The setvbuf function may be used only after the stream pointed to by stream has been
associated with an open file and before any other operation is performed on the stream.
The argument mode determines how the stream will be buffered, as follows: _IOFBF causes
input/output to be fully buffered; _IOLBF causes input/output to be line buffered; _IONBF

causes input/output to be unbuffered. If buf is not a null pointer, the array it points to
may be used instead of a buffer associated by the setvbuf function. (The buffer must have
a lifetime at least as great as the open stream, so the stream should be closed before a buffer
that has automatic storage duration is deallocated upon block exit.) The argument size

specifies the size of the array. The contents of the array at any time are indeterminate.

The setvbuf function returns zero on success, or nonzero if an invalid value is given for
mode or if the request cannot be honored.

21.7 Functions that Modify the File Position Indicator

The stdio.h library has five functions that affect the file position indicator besides those
that do reading or writing: fgetpos, fseek, fsetpos, ftell, and rewind.

The fseek and ftell functions are older than fgetpos and fsetpos.

21.7.1 The fgetpos and fsetpos functions

#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

int fsetpos(FILE *stream, const fpos_t *pos);

The fgetpos function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. The value stored contains unspecified

139

File IO

information usable by the fsetpos function for repositioning the stream to its position at
the time of the call to the fgetpos function.

If successful, the fgetpos function returns zero; on failure, the fgetpos function returns
nonzero and stores an implementation-defined positive value in errno.

The fsetpos function sets the file position indicator for the stream pointed to by stream

according to the value of the object pointed to by pos, which shall be a value obtained from
an earlier call to the fgetpos function on the same stream.

A successful call to the fsetpos function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fsetpos call, the
next operation on an update stream may be either input or output.

If successful, the fsetpos function returns zero; on failure, the fsetpos function returns
nonzero and stores an implementation-defined positive value in errno.

21.7.2 The fseek and ftell functions

#include <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

long int ftell(FILE *stream);

The fseek function sets the file position indicator for the stream pointed to by stream.

For a binary stream, the new position, measured in characters from the beginning of the
file, is obtained by adding offset to the position specified by whence. Three macros in
stdio.h called SEEK_SET, SEEK_CUR, and SEEK_END expand to unique values. If the position
specified by whence is SEEK_SET, the specified position is the beginning of the file; if whence

is SEEK_END, the specified position is the end of the file; and if whence is SEEK_CUR, the
specified position is the current file position. A binary stream need not meaningfully support
fseek calls with a whence value of SEEK_END.

For a text stream, either offset shall be zero, or offset shall be a value returned by an
earlier call to the ftell function on the same stream and whence shall be SEEK_SET.

The fseek function returns nonzero only for a request that cannot be satisfied.

The ftell function obtains the current value of the file position indicator for the stream
pointed to by stream. For a binary stream, the value is the number of characters from
the beginning of the file; for a text stream, its file position indicator contains unspecified
information, usable by the fseek function for returning the file position indicator for the
stream to its position at the time of the ftell call; the difference between two such return
values is not necessarily a meaningful measure of the number of characters written or read.

If successful, the ftell function returns the current value of the file position indicator for the
stream. On failure, the ftell function returns -1L and stores an implementation-defined
positive value in errno.

140

Error Handling Functions

21.7.3 The rewind function

#include <stdio.h>

void rewind(FILE *stream);

The rewind function sets the file position indicator for the stream pointed to by stream

to the beginning of the file. It is equivalent to

(void)fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared.

21.8 Error Handling Functions

21.8.1 The clearerr function

#include <stdio.h>

void clearerr(FILE *stream);

The clearerr function clears the end-of-file and error indicators for the stream pointed to
by stream.

21.8.2 The feof function

#include <stdio.h>

int feof(FILE *stream);

The feof function tests the end-of-file indicator for the stream pointed to by stream and
returns nonzero if and only if the end-of-file indicator is set for stream, otherwise it returns
zero.

21.8.3 The ferror function

#include <stdio.h>

int ferror(FILE *stream);

The ferror function tests the error indicator for the stream pointed to by stream and
returns nonzero if and only if the error indicator is set for stream, otherwise it returns zero.

21.8.4 The perror function

#include <stdio.h>

void perror(const char *s);

141

File IO

The perror function maps the error number in the integer expression errno to an error
message. It writes a sequence of characters to the standard error stream thus: first, if
s is not a null pointer and the character pointed to by s is not the null character, the
string pointed to by s followed by a colon (:) and a space; then an appropriate error
message string followed by a new-line character. The contents of the error message are
the same as those returned by the strerror function with the argument errno, which are
implementation-defined.

21.9 Other Operations on Files

The stdio.h library has a variety of functions that do some operation on files besides
reading and writing.

21.9.1 The remove function

#include <stdio.h>

int remove(const char *filename);

The remove function causes the file whose name is the string pointed to by filename to be
no longer accessible by that name. A subsequent attempt to open that file using that name
will fail, unless it is created anew. If the file is open, the behavior of the remove function
is implementation-defined.

The remove function returns zero if the operation succeeds, nonzero if it fails.

21.9.2 The rename function

#include <stdio.h>

int rename(const char *old_filename, const char *new_filename);

The rename function causes the file whose name is the string pointed to by old_filename

to be henceforth known by the name given by the string pointed to by new_filename. The
file named old_filename is no longer accessible by that name. If a file named by the string
pointed to by new_filename exists prior to the call to the rename function, the behavior is
implementation-defined.

The rename function returns zero if the operation succeeds, nonzero if it fails, in which case
if the file existed previously it is still known by its original name.

21.9.3 The tmpfile function

#include <stdio.h>

FILE *tmpfile(void);

The tmpfile function creates a temporary binary file that will automatically be removed
when it is closed or at program termination. If the program terminates abnormally, whether

142

Reading from Files

an open temporary file is removed is implementation-defined. The file is opened for update
with "wb+" mode.

The tmpfile function returns a pointer to the stream of the file that it created. If the file
cannot be created, the tmpfile function returns a null pointer.

21.9.4 The tmpnam function

#include <stdio.h>

char *tmpnam(char *s);

The tmpnam function generates a string that is a valid file name and that is not the name
of an existing file.

The tmpnam function generates a different string each time it is called, up to TMP_MAX

times. (TMP_MAX is a macro defined in stdio.h.) If it is called more than TMP_MAX times,
the behavior is implementation-defined.

The implementation shall behave as if no library function calls the tmpnam function.

If the argument is a null pointer, the tmpnam function leaves its result in an internal static
object and returns a pointer to that object. Subsequent calls to the tmpnam function may
modify the same object. If the argument is not a null pointer, it is assumed to point to an
array of at least L_tmpnam characters (L_tmpnam is another macro in stdio.h); the tmpnam

function writes its result in that array and returns the argument as its value.

The value of the macro TMP_MAX must be at least 25.

21.10 Reading from Files

21.10.1 Character Input Functions

The fgetc function

#include <stdio.h>

int fgetc(FILE *stream);

The fgetc function obtains the next character (if present) as an unsigned char converted
to an int, from the input stream pointed to by stream, and advances the associated file
position indicator for the stream (if defined).

The fgetc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and fgetc returns
EOF (EOF is a negative value defined in <stdio.h>, usually (-1)). If a read error occurs,
the error indicator for the stream is set and fgetc returns EOF.

143

File IO

The fgets function

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

The fgets function reads at most one less than the number of characters specified by n from
the stream pointed to by stream into the array pointed to by s. No additional characters
are read after a new-line character (which is retained) or after end-of-file. A null character
is written immediately after the last character read into the array.

The fgets function returns s if successful. If end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation, the array contents are indeterminate
and a null pointer is returned.

Warning: Different operating systems may use different character sequences to represent
the end-of-line sequence. For example, some filesystems use the terminator \r\n in text
files; fgets may read those lines, removing the \n but keeping the \r as the last character
of s. This expurious character should be removed in the string s before the string is used
for anything (unless the programmer doesn't care about it). Unixes typically use \n as its
end-of-line sequence, MS-DOS and Windows uses \r\n, and Mac OSes used \r before OS
X.

/* A example program that reads from stdin and writes to stdout */

#include <stdio.h>

#define BUFFER_SIZE 100

int main(void)

{

char buffer[BUFFER_SIZE]; /* a read buffer */

while(fgets (buffer, BUFFER_SIZE, stdin) != NULL)

{

printf("%s",buffer);

}

return 0;

}

/* end program. */

The getc function

#include <stdio.h>

int getc(FILE *stream);

The getc function is equivalent to fgetc, except that it may be implemented as a macro.
If it is implemented as a macro, the stream argument may be evaluated more than once,
so the argument should never be an expression with side effects (i.e. have an assignment,
increment, or decrement operators, or be a function call).

The getc function returns the next character from the input stream pointed to by stream.
If the stream is at end-of-file, the end-of-file indicator for the stream is set and getc returns
EOF (EOF is a negative value defined in <stdio.h>, usually (-1)). If a read error occurs,
the error indicator for the stream is set and getc returns EOF.

144

Reading from Files

The getchar function

#include <stdio.h>

int getchar(void);

The getchar function is equivalent to getc with the argument stdin.

The getchar function returns the next character from the input stream pointed to by stdin.
If stdin is at end-of-file, the end-of-file indicator for stdin is set and getchar returns EOF

(EOF is a negative value defined in <stdio.h>, usually (-1)). If a read error occurs, the
error indicator for stdin is set and getchar returns EOF.

The gets function

#include <stdio.h>

char *gets(char *s);

The gets function reads characters from the input stream pointed to by stdin into the
array pointed to by s until an end-of-file is encountered or a new-line character is read. Any
new-line character is discarded, and a null character is written immediately after the last
character read into the array.

The gets function returns s if successful. If the end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation, the array contents are indeterminate
and a null pointer is returned.

This function and description is only included here for completeness. Most C programmers
nowadays shy away from using gets, as there is no way for the function to know how big the
buffer is that the programmer wants to read into. Commandment #5 of Henry Spencer2's
The Ten Commandments for C Programmers (Annotated Edition) reads, "Thou shalt check
the array bounds of all strings (indeed, all arrays), for surely where thou typest foo someone
someday shall type supercalifragilisticexpialidocious." It mentions gets in the annotation:
"As demonstrated by the deeds of the Great Worm, a consequence of this commandment is
that robust production software should never make use of gets(), for it is truly a tool of the
Devil. Thy interfaces should always inform thy servants of the bounds of thy arrays, and
servants who spurn such advice or quietly fail to follow it should be dispatched forthwith
to the Land Of Rm, where they can do no further harm to thee."

The ungetc function

#include <stdio.h>

int ungetc(int c, FILE *stream);

The ungetc function pushes the character specified by c (converted to an unsigned char)
back onto the input stream pointed to by stream. The pushed-back characters will be

2 http://en.wikipedia.org/wiki/Henry%20Spencer%20

145

http://en.wikipedia.org/wiki/Henry%20Spencer%20

File IO

returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed to by stream) to a file-positioning
function (fseek, fsetpos, or rewind) discards any pushed-back characters for the stream.
The external storage corresponding to the stream is unchanged.

One character of pushback is guaranteed. If the ungetc function is called too many times on
the same stream without an intervening read or file positioning operation on that stream,
the operation may fail.

If the value of c equals that of the macro EOF, the operation fails and the input stream is
unchanged.

A successful call to the ungetc function clears the end-of-file indicator for the stream. The
value of the file position indicator for the stream after reading or discarding all pushed-back
characters shall be the same as it was before the characters were pushed back. For a text
stream, the value of its file-position indicator after a successful call to the ungetc function
is unspecified until all pushed-back characters are read or discarded. For a binary stream,
its file position indicator is decremented by each successful call to the ungetc function; if
its value was zero before a call, it is indeterminate after the call.

The ungetc function returns the character pushed back after conversion, or EOF if the
operation fails.

21.10.2 EOF pitfall

A mistake when using fgetc, getc, or getchar is to assign the result to a variable of type
char before comparing it to EOF. The following code fragments exhibit this mistake, and
then show the correct approach (using type int):

Mistake Correction

char c;

while ((c = getchar()) != EOF)

putchar(c);

int c;

while ((c = getchar()) != EOF)

putchar(c);

Consider a system in which the type char is 8 bits wide, representing 256 different values.
getchar may return any of the 256 possible characters, and it also may return EOF to
indicate end-of-file3, for a total of 257 different possible return values.

When getchar's result is assigned to a char, which can represent only 256 different values,
there is necessarily some loss of information—when packing 257 items into 256 slots, there
must be a collision4. The EOF value, when converted to char, becomes indistinguishable
from whichever one of the 256 characters shares its numerical value. If that character is

3 http://en.wikibooks.org/wiki/end-of-file

4 http://en.wikibooks.org/wiki/Pigeonhole%20principle

146

http://en.wikibooks.org/wiki/end-of-file
http://en.wikibooks.org/wiki/Pigeonhole%20principle

Reading from Files

found in the file, the above example may mistake it for an end-of-file indicator; or, just as
bad, if type char is unsigned, then because EOF is negative, it can never be equal to any
unsigned char, so the above example will not terminate at end-of-file. It will loop forever,
repeatedly printing the character which results from converting EOF to char.

However, this looping failure mode does not occur if the char definition is signed (C makes
the signedness of the default char type implementation-dependent),5 assuming the com-
monly used EOF value of -16. However, the fundamental issue remains that if the EOF value
is defined outside of the range of the char type, when assigned to a char that value is sliced
and will no longer match the full EOF value necessary to exit the loop. On the other hand, if
EOF is within range of char, this guarantees a collision between EOF and a char value. Thus,
regardless of how system types are defined, never use char types when testing against EOF.

On systems where int and char are the same size (i.e., systems incompatible with mini-
mally the POSIX and C99 standards), even the "good" example will suffer from the indistin-
guishability of EOF and some character's value. The proper way to handle this situation is
to check feof7 and ferror8 after getchar returns EOF. If feof indicates that end-of-file has
not been reached, and ferror indicates that no errors have occurred, then the EOF returned
by getchar can be assumed to represent an actual character. These extra checks are rarely
done, because most programmers assume that their code will never need to run on one of
these "big char" systems. Another way is to use a compile-time assertion to make sure that
UINT_MAX > UCHAR_MAX, which at least prevents a program with such an assumption from
compiling in such a system.

21.10.3 Direct input function: the fread function

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

The fread function reads, into the array pointed to by ptr, up to nmemb elements whose
size is specified by size, from the stream pointed to by stream. The file position indicator
for the stream (if defined) is advanced by the number of characters successfully read. If an
error occurs, the resulting value of the file position indicator for the stream is indeterminate.
If a partial element is read, its value is indeterminate.

The fread function returns the number of elements successfully read, which may be less
than nmemb if a read error or end-of-file is encountered. If size or nmemb is zero, fread

returns zero and the contents of the array and the state of the stream remain unchanged.

21.10.4 Formatted input functions: the scanf family of functions

#include <stdio.h>

int fscanf(FILE *stream, const char *format, ...);

5 C99 §6.2.5/15
6 http://en.wikibooks.org/wiki/End-of-file

7 http://en.wikibooks.org/wiki/feof

8 http://en.wikibooks.org/wiki/ferror

147

http://en.wikibooks.org/wiki/End-of-file
http://en.wikibooks.org/wiki/feof
http://en.wikibooks.org/wiki/ferror

File IO

int scanf(const char *format, ...);

int sscanf(const char *s, const char *format, ...);

The fscanf function reads input from the stream pointed to by stream, under control of
the string pointed to by format that specifies the admissible sequences and how they are
to be converted for assignment, using subsequent arguments as pointers to the objects to
receive converted input. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated (as always) but are otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: one or more white-space
characters; an ordinary multibyte character (neither % or a white-space character); or a
conversion specification. Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

• An optional assignment-suppressing character *.
• An optional nonzero decimal integer that specifies the maximum field width.
• An optional h, l (ell) or L indicating the size of the receiving object. The conversion

specifiers d, i, and n shall be preceded by h if the corresponding argument is a pointer to
short int rather than a pointer to int, or by l if it is a pointer to long int. Similarly,
the conversion specifiers o, u, and x shall be preceded by h if the corresponding argument
is a pointer to unsigned short int rather than unsigned int, or by l if it is a pointer
to unsigned long int. Finally, the conversion specifiers e, f, and g shall be preceded
by l if the corresponding argument is a pointer to double rather than a pointer to float,
or by L if it is a pointer to long double. If an h, l, or L appears with any other format
specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied. The valid conversion
specifiers are described below.

The fscanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the fscanf function returns. Failures are described as input failures (due
to the unavailability of input characters) or matching failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the
first non-white-space character (which remains unread) or until no more characters remain
unread.

A directive that is an ordinary multibyte character is executed by reading the next characters
of the stream. If one of the characters differs from one comprising the directive, the directive
fails, and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following
steps:

Input white-space characters (as specified by the isspace function) are skipped, unless the
specification includes a [, c, or n specifier. (The white-space characters are not counted
against the specified field width.)

148

Reading from Files

An input item is read from the stream, unless the specification includes an n specifier. An
input item is defined as the longest matching sequences of input characters, unless that
exceeds a specified field width, in which case it is the initial subsequence of that length in
the sequence. The first character, if any, after the input item remains unread. If the length
of the input item is zero, the execution of the directive fails; this condition is a matching
failure, unless an error prevented input from the stream, in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive, the count
of input characters) is converted to a type appropriate to the conversion specifier. If the
input item is not a matching sequence, the execution of the directive fails; this condition is
a matching failure. Unless assignment suppression was indicated by a *, the result of the
conversion is placed in the object pointed to by the first argument following the format

argument that has not already received a conversion result. If this object does not have
an appropriate type, or if the result of the conversion cannot be represented in the space
provided, the behavior is undefined.

The following conversion specifiers are valid:

d

Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argument. The
corresponding argument shall be a pointer to integer.

i

Matches an optionally signed integer, whose format is the same as expected for the subject
sequence of the strtol function with the value 0 for the base argument. The corresponding
argument shall be a pointer to integer.

o

Matches an optionally signed octal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument. The
corresponding argument shall be a pointer to unsigned integer.

u

Matches an optionally signed decimal integer, whose format is the same as expected for
the subject sequence of the strtoul function with the value 10 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

x

Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the strtoul function with the value 16 for the base argument.
The corresponding argument shall be a pointer to unsigned integer.

e, f, g

Matches an optionally signed floating-point number, whose format is the same as expected
for the subject string of the strtod function. The corresponding argument will be a pointer
to floating.

s

149

File IO

Matches a sequence of non-white-space characters. (No special provisions are made for
multibyte characters.) The corresponding argument shall be a pointer to the initial char-
acter of an array large enough to accept the sequence and a terminating null character,
which will be added automatically.

[

Matches a nonempty sequence of characters (no special provisions are made for multibyte
characters) from a set of expected characters (the scanset). The corresponding argument
shall be a pointer to the initial character of an array large enough to accept the sequence
and a terminating null character, which will be added automatically. The conversion
specifier includes all subsequent characters in the format string, up to and including the
matching right bracket (]). The characters between the brackets (the scanlist) comprise
the scanset, unless the character after the left bracket is a circumflex (ˆ), in which case
the scanset contains all the characters that do not appear in the scanlist between the
circumflex and the right bracket. If the conversion specifier begins with [] or [ˆ], the right-
bracket character is in the scanlist and the next right bracket character is the matching
right bracket that ends the specification; otherwise, the first right bracket character is the
one that ends the specification. If a - character is in the scanlist and is not the first,
nor the second where the first character is a ˆ, nor the last character, the behavior is
implementation-defined.

c

Matches a sequence of characters (no special provisions are made for multibyte characters)
of the number specified by the field width (1 if no field width is present in the directive).
The corresponding argument shall be a pointer to the initial character of an array large
enough to accept the sequence. No null character is added.

p

Matches an implementation-defined set of sequences, which should be the same as the set
of sequences that may be produced by the %p conversion of the fprintf function. The
corresponding argument shall be a pointer to void. The interpretation of the input then
is implementation-defined. If the input item is a value converted earlier during the same
program execution, the pointer that results shall compare equal to that value; otherwise
the behavior of the %p conversion is undefined.

n

No input is consumed. The corresponding argument shall be a pointer to integer into
which is to be written the number of characters read from the input stream so far by this
call to the fscanf function. Execution of a %n directive does not increment the assignment
count returned at the completion of execution of the fscanf function.

%

Matches a single %; no conversion or assignment occurs. The complete conversion specifi-
cation shall be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion specifiers E, G, and X are also valid and behave the same as, respectively, e,
g, and x.

150

Writing to Files

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including new-line characters) is
left unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than via the %n directive.

The fscanf function returns the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the fscanf function returns the number of input items assigned,
which can be fewer than provided for, or even zero, in the event of an early matching failure.

The scanf function is equivalent to fscanf with the argument stdin interposed before the
arguments to scanf. Its return value is similar to that of fscanf.

The sscanf function is equivalent to fscanf, except that the argument s specifies a string
from which the input is to be obtained, rather than from a stream. Reaching the end of
the string is equivalent to encountering the end-of-file for the fscanf function. If copying
takes place between objects that overlap, the behavior is undefined.

21.11 Writing to Files

21.11.1 Character Output Functions

The fputc function

#include <stdio.h>

int fputc(int c, FILE *stream);

The fputc function writes the character specified by c (converted to an unsigned char)
to the stream pointed to by stream at the position indicated by the associated file position
indicator (if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream is opened with append mode, the character is appended
to the output stream. The function returns the character written, unless a write error occurs,
in which case the error indicator for the stream is set and fputc returns EOF.

The fputs function

#include <stdio.h>

int fputs(const char *s, FILE *stream);

The fputs function writes the string pointed to by s to the stream pointed to by stream.
The terminating null character is not written. The function returns EOF if a write error
occurs, otherwise it returns a nonnegative value.

151

File IO

The putc function

#include <stdio.h>

int putc(int c, FILE *stream);

The putc function is equivalent to fputc, except that if it is implemented as a macro, it
may evaluate stream more than once, so the argument should never be an expression with
side effects. The function returns the character written, unless a write error occurs, in which
case the error indicator for the stream is set and the function returns EOF.

The putchar function

#include <stdio.h>

int putchar(int c);

The putchar function is equivalent to putc with the second argument stdout. It returns
the character written, unless a write error occurs, in which case the error indicator for
stdout is set and the function returns EOF.

The puts function

#include <stdio.h>

int puts(const char *s);

The puts function writes the string pointed to by s to the stream pointed to by stdout, and
appends a new-line character to the output. The terminating null character is not written.
The function returns EOF if a write error occurs; otherwise, it returns a nonnegative value.

21.11.2 Direct output function: the fwrite function

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose
size is specified by size to the stream pointed to by stream. The file position indicator for
the stream (if defined) is advanced by the number of characters successfully written. If an
error occurs, the resulting value of the file position indicator for the stream is indeterminate.
The function returns the number of elements successfully written, which will be less than
nmemb only if a write error is encountered.

21.11.3 Formatted output functions: the printf family of functions

#include <stdarg.h>

#include <stdio.h>

int fprintf(FILE *stream, const char *format, ...);

int printf(const char *format, ...);

152

Writing to Files

int sprintf(char *s, const char *format, ...);

int vfprintf(FILE *stream, const char *format, va_list arg);

int vprintf(const char *format, va_list arg);

int vsprintf(char *s, const char *format, va_list arg);

Note: Some length specifiers and format specifiers are new in C99. These may not be
available in older compilers and versions of the stdio library, which adhere to the C89/C90
standard. Wherever possible, the new ones will be marked with (C99).

The fprintf function writes output to the stream pointed to by stream under control of
the string pointed to by format that specifies how subsequent arguments are converted for
output. If there are insufficient arguments for the format, the behavior is undefined. If
the format is exhausted while arguments remain, the excess arguments are evaluated (as
always) but are otherwise ignored. The fprintf function returns when the end of the
format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial shift
state. The format is composed of zero or more directives: ordinary multibyte characters
(not %), which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments, converting them, if
applicable, according to the corresponding conversion specifier, and then writing the result
to the output stream.

Each conversion specification is introduced by the character %. After the %, the following
appear in sequence:

• Zero or more flags (in any order) that modify the meaning of the conversion specification.
• An optional minimum field width. If the converted value has fewer characters than

the field width, it is padded with spaces (by default) on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The field width
takes the form of an asterisk * (described later) or a decimal integer. (Note that 0 is
taken as a flag, not as the beginning of a field width.)

• An optional precision that gives the minimum number of digits to appear for the d, i, o,
u, x, and X conversions, the number of digits to appear after the decimal-point character
for a, A, e, E, f, and F conversions, the maximum number of significant digits for the g

and G conversions, or the maximum number of characters to be written from a string in
s conversions. The precision takes the form of a period (.) followed either by an asterisk
* (described later) or by an optional decimal integer; if only the period is specified, the
precision is taken as zero. If a precision appears with any other conversion specifier,
the behavior is undefined. Floating-point numbers are rounded to fit the precision; i.e.
printf("%1.1f\n", 1.19); produces 1.2.

• An optional length modifier that specifies the size of the argument.
• A conversion specifier character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In
this case, an int argument supplies the field width or precision. The arguments specifying
field width, or precision, or both, shall appear (in that order) before the argument (if any)
to be converted. A negative field width argument is taken as a - flag followed by a positive
field width. A negative precision argument is taken as if the precision were omitted.

153

File IO

The flag characters and their meanings are:

-

The result of the conversion is left-justified within the field. (It is right-justified if this flag
is not specified.)

+

The result of a signed conversion always begins with a plus or minus sign. (It begins with
a sign only when a negative value is converted if this flag is not specified. The results of all
floating conversions of a negative zero, and of negative values that round to zero, include
a minus sign.)

space

If the first character of a signed conversion is not a sign, or if a signed conversion results
in no characters, a space is prefixed to the result. If the space and + flags both appear,
the space flag is ignored.

#

The result is converted to an "alternative form". For o conversion, it increases the precision,
if and only if necessary, to force the first digit of the result to be a zero (if the value and
precision are both 0, a single 0 is printed). For x (or X) conversion, a nonzero result has
0x (or 0X) prefixed to it. For a, A, e, E, f, F, g, and G conversions, the result always
contains a decimal-point character, even if no digits follow it. (Normally, a decimal-point
character appears in the result of these conversions only if a digit follows it.) For g and
G conversions, trailing zeros are not removed from the result. For other conversions, the
behavior is undefined.

0

For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is performed.
If the 0 and - flags both appear, the 0 flag is ignored. For d, i, o, u, x, and X conversions,
if a precision is specified, the 0 flag is ignored. For other conversions, the behavior is
undefined.

The length modifiers and their meanings are:

hh

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed

char or unsigned char argument (the argument will have been promoted according to
the integer promotions, but its value shall be converted to signed char or unsigned char

before printing); or that a following n conversion specifier applies to a pointer to a signed

char argument.

h

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a short int

or unsigned short int argument (the argument will have been promoted according to
the integer promotions, but its value shall be converted to short int or unsigned short

154

Writing to Files

int before printing); or that a following n conversion specifier applies to a pointer to a
short int argument.

l (ell)

Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long int or
unsigned long int argument; that a following n conversion specifier applies to a pointer
to a long int argument; (C99) that a following c conversion specifier applies to a wint_t

argument; (C99) that a following s conversion specifier applies to a pointer to a wchar_t

argument; or has no effect on a following a, A, e, E, f, F, g, or G conversion specifier.

ll (ell-ell)

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a long

long int or unsigned long long int argument; or that a following n conversion specifier
applies to a pointer to a long long int argument.

j

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t

or uintmax_t argument; or that a following n conversion specifier applies to a pointer to
an intmax_t argument.

z

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or
the corresponding signed integer type argument; or that a following n conversion specifier
applies to a pointer to a signed integer type corresponding to size_t argument.

t

(C99) Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t

or the corresponding unsigned integer type argument; or that a following n conversion
specifier applies to a pointer to a ptrdiff_t argument.

L

Specifies that a following a, A, e, E, f, F, g, or G conversion specifier applies to a long

double argument.

If a length modifier appears with any conversion specifier other than as specified above, the
behavior is undefined.

The conversion specifiers and their meanings are:

d, i

The int argument is converted to signed decimal in the style [−−−]dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it is expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no characters.

o, u, x, X

The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u), or
unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdef are used for
x conversion and the letters ABCDEF for X conversion. The precision specifies the minimum

155

File IO

number of digits to appear; if the value being converted can be represented in fewer digits,
it is expanded with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no characters.

f, F

A double argument representing a (finite) floating-point number is converted to decimal
notation in the style [−]ddd.ddd, where the number of digits after the decimal-point char-
acter is equal to the precision specification. If the precision is missing, it is taken as 6; if
the precision is zero and the # flag is not specified, no decimal-point character appears.
If a decimal-point character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.
(C99) A double argument representing an infinity is converted in one of the styles [-]inf or
[-]infinity — which style is implementation-defined. A double argument representing a
NaN is converted in one of the styles [-]nan or [-]nan(n-char-sequence) — which style, and
the meaning of any n-char-sequence, is implementation-defined. The F conversion specifier
produces INF, INFINITY, or NAN instead of inf, infinity, or nan, respectively. (When
applied to infinite and NaN values, the -, +, and space flags have their usual meaning; the
and 0 flags have no effect.)

e, E

A double argument representing a (finite) floating-point number is converted in the style
[−]d.ddde±dd, where there is one digit (which is nonzero if the argument is nonzero) before
the decimal-point character and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is zero and the # flag is not specified,
no decimal-point character appears. The value is rounded to the appropriate number of
digits. The E conversion specifier produces a number with E instead of e introducing the
exponent. The exponent always contains at least two digits, and only as many more digits
as necessary to represent the exponent. If the value is zero, the exponent is zero.
(C99) A double argument representing an infinity or NaN is converted in the style of an
f or F conversion specifier.

g, G

A double argument representing a (finite) floating-point number is converted in style f or
e (or in style F or E in the case of a G conversion specifier), with the precision specifying the
number of significant digits. If the precision is zero, it is taken as 1. The style used depends
on the value converted; style e (or E) is used only if the exponent resulting from such a
conversion is less than −4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result unless the # flag is specified; a decimal-
point character appears only if it is followed by a digit.
(C99) A double argument representing an infinity or NaN is converted in the style of an
f or F conversion specifier.

a, A

(C99) A double argument representing a (finite) floating-point number is converted in
the style [−]0xh.hhhhp±d, where there is one hexadecimal digit (which is nonzero if the
argument is a normalized floating-point number and is otherwise unspecified) before the
decimal-point character (Binary implementations can choose the hexadecimal digit to the

156

Writing to Files

left of the decimal-point character so that subsequent digits align to nibble [4-bit] bound-
aries.) and the number of hexadecimal digits after it is equal to the precision; if the
precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient for an
exact representation of the value; if the precision is missing and FLT_RADIX is not a power
of 2, then the precision is sufficient to distinguish (The precision p is sufficient to distin-
guish values of the source type if 16p−1 > bn where b is FLT_RADIX and n is the number
of base-b digits in the significand of the source type. A smaller p might suffice depending
on the implementation's scheme for determining the digit to the left of the decimal-point
character.) values of type double, except that trailing zeros may be omitted; if the pre-
cision is zero and the # flag is not specified, no decimal-point character appears. The
letters abcdef are used for a conversion and the letters ABCDEF for A conversion. The A

conversion specifier produces a number with X and P instead of x and p. The exponent
always contains at least one digit, and only as many more digits as necessary to represent
the decimal exponent of 2. If the value is zero, the exponent is zero.
A double argument representing an infinity or NaN is converted in the style of an f or F

conversion specifier.

c

If no l length modifier is present, the int argument is converted to an unsigned char,
and the resulting character is written.
(C99) If an l length modifier is present, the wint_t argument is converted as if by an ls

conversion specification with no precision and an argument that points to the initial ele-
ment of a two-element array of wchar_t, the first element containing the wint_t argument
to the lc conversion specification and the second a null wide character.

s

If no l length modifier is present, the argument shall be a pointer to the initial element
of an array of character type. (No special provisions are made for multibyte characters.)
Characters from the array are written up to (but not including) the terminating null char-
acter. If the precision is specified, no more than that many characters are written. If the
precision is not specified or is greater than the size of the array, the array shall contain a
null character.
(C99) If an l length modifier is present, the argument shall be a pointer to the initial
element of an array of wchar_t type. Wide characters from the array are converted to
multibyte characters (each as if by a call to the wcrtomb function, with the conversion
state described by an mbstate_t object initialized to zero before the first wide charac-
ter is converted) up to and including a terminating null wide character. The resulting
multibyte characters are written up to (but not including) the terminating null character
(byte). If no precision is specified, the array shall contain a null wide character. If a
precision is specified, no more than that many characters (bytes) are written (including
shift sequences, if any), and the array shall contain a null wide character if, to equal the
multibyte character sequence length given by the precision, the function would need to
access a wide character one past the end of the array. In no case is a partial multibyte
character written. (Redundant shift sequences may result if multibyte characters have a
state-dependent encoding.)

p

157

File IO

The argument shall be a pointer to void. The value of the pointer is converted to a
sequence of printable characters, in an implementation-defined manner.

n

The argument shall be a pointer to signed integer into which is written the number of
characters written to the output stream so far by this call to fprintf. No argument is
converted, but one is consumed. If the conversion specification includes any flags, a field
width, or a precision, the behavior is undefined.

%

A % character is written. No argument is converted. The complete conversion specification
shall be %%.

If a conversion specification is invalid, the behavior is undefined. If any argument is not the
correct type for the corresponding coversion specification, the behavior is undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is expanded to contain the conversion
result.

For a and A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a
hexadecimal floating number with the given precision.

It is recommended practice that if FLT_RADIX is not a power of 2, the result should be one
of the two adjacent numbers in hexadecimal floating style with the given precision, with
the extra stipulation that the error should have a correct sign for the current rounding
direction.

It is recommended practice that for e, E, f, F, g, and G conversions, if the number of signif-
icant decimal digits is at most DECIMAL_DIG, then the result should be correctly rounded.
(For binary-to-decimal conversion, the result format's values are the numbers representable
with the given format specifier. The number of significant digits is determined by the format
specifier, and in the case of fixed-point conversion by the source value as well.) If the num-
ber of significant decimal digits is more than DECIMAL_DIG but the source value is exactly
representable with DECIMAL_DIG digits, then the result should be an exact representation
with trailing zeros. Otherwise, the source value is bounded by two adjacent decimal strings
L < U, both having DECIMAL_DIG significant digits; the value of the resultant decimal string
D should satisfy L ≤ D ≤ U, with the extra stipulation that the error should have a correct
sign for the current rounding direction.

The fprintf function returns the number of characters transmitted, or a negative value if
an output or encoding error occurred.

The printf function is equivalent to fprintf with the argument stdout interposed before
the arguments to printf. It returns the number of characters transmitted, or a negative
value if an output error occurred.

The sprintf function is equivalent to fprintf, except that the argument s specifies an
array into which the generated input is to be written, rather than to a stream. A null
character is written at the end of the characters written; it is not counted as part of
the returned sum. If copying takes place between objects that overlap, the behavior is

158

References

undefined. The function returns the number of characters written in the array, not counting
the terminating null character.

The vfprintf function is equivalent to fprintf, with the variable argument list replaced
by arg, which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vfprintf function does not invoke the va_end macro. The function
returns the number of characters transmitted, or a negative value if an output error occurred.

The vprintf function is equivalent to printf, with the variable argument list replaced by
arg, which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vprintf function does not invoke the va_end macro. The function
returns the number of characters transmitted, or a negative value if an output error occurred.

The vsprintf function is equivalent to sprintf, with the variable argument list replaced
by arg, which shall have been initialized by the va_start macro (and possibly subsequent
va_arg calls). The vsprintf function does not invoke the va_end macro. If copying takes
place between objects that overlap, the behavior is undefined. The function returns the
number of characters written into the array, not counting the terminating null character.

21.12 References

pl:C/Czytanie i pisanie do plików9

9 http://pl.wikibooks.org/wiki/C%2FCzytanie%20i%20pisanie%20do%20plik%C3%B3w

159

http://pl.wikibooks.org/wiki/C%2FCzytanie%20i%20pisanie%20do%20plik%C3%B3w

22 Beginning exercises

22.1 Variables

22.1.1 Naming

1. Can a variable name start with a number?
2. Can a variable name start with a typographical symbol(e.g. #, *, _)?
3. Give an example of a C variable name that would not work. Why doesn't it work?

Solution

1. No, the name of a variable must begin with a letter (lowercase or uppercase), or an
underscore.

2. Only the underscore can be used.
3. for example, #nm*rt is not allowed because # and * are not the valid characters for

the name of a variable.

#include<stdio.h>

main()

{

int a,b,c,max;

clrscr();

printf("\nenter three numbers ");

scanf("%d %d %d",&a,&b,&c);

max=a;

if(max<b)

max=b;

if(max<c)

max=c;

printf("\nlargest=%d \n",max);

getch();

}

22.1.2 Data Types

1. List at least three data types in C
a) On your computer, how much memory does each require?
b) Which ones can be used in place of another? Why?

i. Are there any limitations on these uses?
ii. If so, what are they?
iii. Is it necessary to do anything special to use the alternative?

2. Can the name we use for a data type (e.g. 'int', 'float') be used as a variable?

Solution

• 3 data types : long int, short int,float.

161

Beginning exercises

• On my computer :
• long int : 4 byte
• short int : 2 bytes
• float : 4 bytes

• we can not use 'int' or 'float' as a variable's name.

22.1.3 Assignment

1. How would you assign the value 3.14 to a variable called pi?
2. Is it possible to assign an int to a double?

a) Is the reverse possible?

Solution

• The standard way of assigning 3.14 to pi is:

double pi;

pi=3.14;

• Since pi is a constant, good programming convention dictates to make it unchangeable
during runtime. Extra credit if you use one of the following two lines:

const float pi = 3.14;

#define pi 3.14

• Yes, for example :

int a=67;

double b;

b=a;

• Yes, but a cast is necessary and the double is truncated:

double a=89;

int b;

b=(int) a;

22.1.4 Referencing

1. A common mistake for new students is reversing the assignment statement. Suppose
you want to assign the value stored in the variable "pi" to another variable, say "pi2":

a) What is the correct statement?
b) What is the reverse? Is this a valid C statement (even if it gives incorrect results)?
c) What if you wanted to assign a constant value (like 3.1415) to "pi2":

a. What would the correct statement look like?
b. Would the reverse be a valid or invalid C statement?

Solution

1. pi2 = pi;

2. The reverse, pi = pi2; is a valid C statement if pi is not a constant.
3. a. pi2 = 3.1415;

b. The reverse: 3.1415 = pi2; is not valid since it is impossible to assign a value to
a literal.

162

Simple I/O

22.2 Simple I/O

22.2.1 Input

1. scanf() is a very powerful function. Describe some features that make it so versatile.
2. Write the scanf() function call that will read into the variable "var":

a) a float
b) an int
c) a double

Solution

scanf("%f",&var); //read float into var

scanf("%d",&var); //read int into var

scanf("%lf", &var); //read double into var

22.2.2 String manipulation

1. Write a program that prompts the user for a string, and prints its reverse. Solution
One possible solution could be:

#include <stdio.h>

#include <string.h>

int main(void)

{

char s[81]; // A string of upto 80 chars + '\0'

int i;

puts("Please write a string: ");

fgets(s, 81, stdin);

puts("Your sentence in reverse: ");

for (i= strlen(s)-1; i >= 0; i--)

{

if (s[i] == '\n')

continue; // don't write newline

else

putchar(s[i]);

}

putchar('\n');

return 0;

}

2. Write a program that prompts the user for a sentence, and prints each word on its own
line. Solution One possible solution could be:

#include <stdio.h>

int main(void)

{

char s[81], word[81];

int n= 0, idx= 0;

puts("Please write a sentence:");

fgets(s, 81, stdin);

/* %s matches a sequence of non-whitespace character, which is a

163

Beginning exercises

* fair definition of "word" in this context.

* %n matches nothing, but stores the number of characters that have

* been processed. i.e. if s is "Hello, World!", then word and n

* will be "Hello," and 6 respectively in the first iteration. In

* the second iteration they will be "World!" and 7 (6 chars +

* the space in front of the word).

*/

while (sscanf(&s[idx], "%s%n", word, &n) > 0)

{

idx += n;

puts(word);

}

return 0;

}

22.2.3 Loops

1. Write a function that outputs a right isosceles triangle of height and width n, so n = 3
would look like

*

**

Solution One possible solution:

void isosceles(int n)

{

int x,y;

for (y= 0; y < n; y++)

{

for (x= 0; x <= y; x++)

putchar('*');

putchar('\n');

}

}

2. Write a function that outputs a sideways triangle of height 2n-1 and width n, so the
output for n = 4 would be:

*

**

**

*

Solution One possible solution:

void sideways(int n)

{

int x,y;

for (y= 0; y < n; y++)

{

for (x= 0; x <= y; x++)

putchar('*');

putchar('\n');

}

164

Program Flow

for (y= n-1; y > 0; y--)

{

for (x= 0; x < y; x++)

putchar('*');

putchar('\n');

}

}

or like this (all math)

void sideways(int n)

{

int i=0,j=0;

for(i=1;i<2*n;i++){

for(j=1;j<=(n-(abs(n-i)));j++){

printf("*");

}

printf("\n");

}

}

3. Write a function that outputs a right-side-up triangle of height n and width 2n-1; the
output for n = 6 would be:

*

Solution One possible solution:

void right_side_up(int n)

{

int x,y;

for (y= 1; y <= n; y++)

{

for (x= 0; x < n-y; x++)

putchar(' ');

for (x= (n-y); x < (n-y)+(2*y-1); x++)

putchar('*');

putchar('\n');

}

}

22.3 Program Flow

1. Build a program where control passes from main to four different functions with 4 calls.

2. Now make a while loop in main with the function calls inside it. Ask for input at the
beginning of the loop. End the while loop if the user hits Q

3. Next add conditionals to call the functions when the user enters numbers, so 1 goes to
function1, 2 goes to function 2, etc.

4. Have function 1 call function a, which calls function b, which calls function c

5. Draw out a diagram of program flow, with arrows to indicate where control goes

165

Beginning exercises

22.4 Functions

1. Write a function to check if an integer is negative; the declaration should look like bool
is_positive(int i);

2. Write a function to raise a floating point number to an integer power, so for example to
when you use it

float a = raise_to_power(2, 3); //a gets 8

float b = raise_to_power(9, 2); //b gets 81

float raise_to_power(float f, int power); //make this your declaration

22.5 Math

1. Write a function to calculate if a number is prime. Return 1 if it is prime and 0 if it is
not a prime. Solution One possible solution using a naïve primality test1:

// to compile: gcc -Wall prime.c -lm -o prime

#include <math.h> // for the square root function sqrt()

#include <stdio.h>

int is_prime(int n);

int main()

{

printf("Write an integer: ");

int var;

scanf("%d", &var);

if (is_prime(var)==1) {

printf("A prime\n");

} else {

printf("Not a prime\n");

}

return 1;

}

int is_prime(int n)

{

int x;

int sq= sqrt(n)+1;

// Checking the trivial cases first

if (n < 2)

return 0;

if (n == 2 || n == 3)

return 1;

// Checking if n is divisible by 2 or odd numbers between 3 and the

// square root of n.

if (n % 2 == 0)

return 0;

for (x= 3; x <= sq; x += 2)

{

if (n % x == 0)

1 http://en.wikipedia.org/wiki/primality%20test

166

http://en.wikipedia.org/wiki/primality%20test

Recursion

return 0;

}

return 1;

}

2. Write a function to determine the number of prime numbers below n.

3. Write a function to find the square root by using Newton's method.

4. Write functions to evaluate the trigonometric functions:

5. Try to write a random number generator.

6. Write a function to determine the prime number between 2 and 100:

22.6 Recursion

Merge sort

1. Write a C program to generate a random integer array with a given length n , and sort
it recursively using the Merge sort algorithm.

• The merge sort algorithm is a recursive algorithm .

- sorting a one element array is easy.

- sorting two one-element arrays, requires the merge operation. The merge operation looks
at two sorted arrays as lists, and compares the head of the list , and which ever head is
smaller, this element is put on the sorted list and the head of that list is ticked off, so the
next element becomes the head of that list. This is done until one of the lists is exhausted,
and the other list is then copied onto the end of the sorted list.

- the recursion occurs, because merging two one-element arrays produces one two-element
sorted array, which can be merged with another two-element sorted array produced the
same way. This produces a sorted 4 element array, and the same applies for another 4
element sorted array.

- so the basic merge sort, is to check the size of list to be sorted, and if it is greater than
one, divide the array into two, and call merge sort again on the two halves. After wards,
merge the two halves in a temporary space of equal size, and then copy back the final sorted
array onto the original array.

Solution One possible solution , after reading online descriptions of recursive merge sort,
e.g. Dasgupta :

// to compile: gcc -Wall rmergesort.c -lm -o rmergesort

/*

==

Name : rmergesort.c

Author : Anon

Version : 0.1

Copyright : (C)2013 under CC-By-SA 3.0 License

Description : Recursive Merge Sort, Ansi-style

167

Beginning exercises

==

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

//const int MAX = 200;

const int MAX = 20000000;

int *b;

int printOff = 0;

// this debugging print out of the array helps to show

// what is going on.

void printArray(char* label, int* a, int sz) {

int h = sz/ 2;

int i;

if (printOff) return;

printf("\n%s:\n", label);

for (i = 0; i < h; ++i) {

printf("%d%c", a[i],

// add in a newline every 20 numbers

((i != 0 && i % 20 == 0)? '\n': ' '));

}

printf(" | ");

for (;i < sz; ++i) {

printf("%d%c", a[i],

((i != 0 && i % 20 == 0)? '\n': ' '));

}

putchar('\n');

}

void mergesort(int* a, int m) {

printArray("BEFORE", a, m);

if (m > 2) {

// if greater than 2 elements, then recursive

mergesort(a, m / 2);

mergesort(a + m / 2, m - m / 2);

} else if (m == 2 && a[0] > a[1]) {

// if exactly 2 elements and need swapping, swap

int t = a[1];

a[1] = a[0];

a[0] = t;

goto end;

}

// 1 or greater than 2 elements which have been recursively sorted

// divide the array into a left and right array

// merge into the array b with index l.

int n = m/2;

int o = m - n;

168

Recursion

int i = 0, j = n;

int l = 0;

// i is left, j is right ;

// l should equal m the size of the array

while (i < n) {

if (j >= m) {

// the right array has finished, so copy the remaining left array

for(; i < n; ++i) {

b[l++] = a[i];

}

// the merge operation is to copy the smaller current element and

// increment the index of the parent sub-array.

} else if(a[i] < a[j]) {

b[l++] = a[i++];

} else {

b[l++] = a[j++];

}

}

while (j < m) {

// copy the remaining right array , if any

b[l++] = a[j++];

}

memcpy(a, b, sizeof(int) * l);

end:

printArray("AFTER", a, m);

return;

}

void rand_init(int* a, int n) {

int i;

for (i = 0; i < n; ++i) {

a[i] = rand() % MAX;

}

}

int main(void) {

puts("!!!Hello World!!!"); /* prints !!!Hello World!!! */

// int N = 20;

// int N = 1000;

// int N = 1000000;

int N = 100000000; // still can't make a stack overflow on ubuntu,4GB,

phenom

printOff = 1;

int *a;

b = calloc(N, sizeof(int));

a = calloc(N, sizeof(int));

rand_init(a, N);

mergesort(a, N);

printOff = 0;

printArray("LAST", a, N);

free(a);

169

Beginning exercises

free(b);

return EXIT_SUCCESS;

}

/* Having failed to translate my concept of non-recursive merge sort,

* I tackled the easier case of recursive merge sort.

* The next task is to translate the recursive version to a non-recursive

* version. This could be done by replacing calls to mergesort, with

* pushes onto a stack of

* tuples of (<array start address>, <number of elements to process>)

*/

/* The central idea of merging, is that two sorted lists can be

* merged into one sorted list, by comparing the top of each list and

* moving the lowest valued element onto the end of the new list.

* The other list which has the higher valued element keeps its top

* element unchanged. When a list is exhausted, copy the remaining other list

* onto the end of the new list.

*/

/* The recursive part, is to defer any work in sorting an unsorted list,

* by dividing it into two lists until there is only 1 or two elements,

* and if there are two elements, sort them directly by swapping if

* the first element is larger than the second element.

*

* After returning from a recursive call, merge the lists, which will

* begin with one or two element sorted lists. The result is a sorted list

* which will be returned to the parent of the recursive call, and can

* be used for merging.

*/

/* The following is an imaginary discussion about what a programmer

* might be thinking about when programming:

*

* Visualising recursion in terms of a Z80 assembly language, which

* is similiar to most assembly languages, there is a data stack (DS) and

* a call stack (CS) pointer, and each recursive call to mergesort

* pushes the return address , which is the program address of the instruction

* after the call , onto the stack pointed to by CS and CS is incremented,

* and the address of the array start and integer which is the subarray length

* onto the data stack pointed to by DS, which will be incremented twice.

*

* If the number of recursive , active calls exceed the allowable space for

either the call stack

* or the data stack, then the program will crash , or a process space

protection

* violation interrupt signal will be sent by the CPU, and the interrupt vector

* for that signal will jump the processor's current instruction pointer to the

* interrupt handling routine.

*/

Binary heaps

2. Binary heaps :

• A binary max-heap or min-heap, is an ordered structure where some nodes are guaranteed
greater than other nodes, e.g. the parent vs two children. A binary heap can be stored
in an array , where ,

170

Recursion

- given a position i (the parent) , i*2 is the left child, and i*2+1 is the right child.

- (C arrays begin at position 0, but 0 * 2 = 0, and 0 *2 + 1= 1, which is incorrect , so
start the heap at position 1, or add 1 for parent-to-child calculations, and subtract 1 for
child-to-parent calculations).

• try to model this using with a pencil and paper, using 10 random unsorted numbers,
and inserting each of them into a "heapsort" array of 10 elements.

• To insert into a heap, end-add and swap-parent if higher, until parent higher.

• To delete the top of a heap, move end-to-top, and defer-higher-child or sift-down ,
until no child is higher.

• try it on a pen and paper the numbers 10, 4, 6 ,3 ,5 , 11.

pen-and-paper-solution

• 10, 4, 6, 3, 5, 11 -> 10
• 4, 6,3, 5, 11 -> 10, 4 : 4 is end-added, no swap-parent because 4 < 10.
• 6, 3, 5, 11 -> 10, 4, 6 : 6 is end-added, no swap-parent because 6 < 10.
• 3, 5, 11 -> 10, 4, 6, 3 : 3 is end-added, 3 is position 4 , divide by 2 = 2, 4 at position 2,

no swap-parent because 4 > 3.
• 5 , 11 -> 10, 4, 6, 3 , 5 : 5 is end-added , 5 is position 5, divided by 2 = 2, 4 at position

2, swap-parent as 4 < 5; 5 at position 2, no swap-parent because 5 < 10 at position 1.
- 10 , 5, 6, 3, 4

• 11 -> 10, 5, 6, 3, 4, 11 : 11 is end-added, 11 is position 6, divide by 2 = 3, swap 6 with
11, 11 is position 3, swap 11 with 10, stop as no parent.
- 11, 5, 10, 3, 4, 6
- 11 has children 5, 10 ; 5 has children 3 and 4 ; 10 has child 6. Parent always > child.

• the answer was 11, 5, 10, 3, 4 , 6.

• EXERCISE: Now try removing each top element of 11, 5, 10, 3, 4, 6 , using end-to-top
and sift-down (or swap-higher-child) to get the numbers

in descending order.

pen-and-paper-solution

• 11 leaves * , 5, 10, 3, 4, 6 -> 6 , 5, 10, 3, 4 -> sift-down -> choose greater child 5
(2*n+0) or 10 (2*n+1) -> is 6 > 10 ? no -> swap 10 and 6 ->
- 10, 5, *6, 3, 4 -> 4 is greatest child as no +1 child. is 6 > 4 ? yes, stop.

• 10 leaves * , 5 , 6 , 3, 4 -> *4, 5, 6, 3 -> is left(0) or right(+1) child greater -> +1 is
greater; is 4 > +1 child ? no , swap
- 6,5, *4, 3 -> *4 has no children so stop.

• 6 leaves *, 5, 4, 3 -> *3, 5, 4 -> +0 child is greater -> is 3 > 5 ? no , so swap -> 5, *3,
4 , *3 has no child so stop. is

• 5 leaves so 3, 4 -> *4, 3 -> +0 child greatest as no right child -> is 4 > 3 ? no , so exit
• 4 leaves 3 .
• 3 leaves *.
• numbers extracted in descending order 11, 10, 6, 5, 4, 3.

171

Beginning exercises

• a priority queue allows elements to be inserted with a priority , and extracted according
to priority. (This can happen usefully, if the element has a paired structure, one part is
the key, and the other part the data. Otherwise, it is just a mechanism for sorting).

• EXERCISE: Using the above technique of insert-back/challenge-parent, and delete-
front/last-to-front/defer-higher-child, implement either heap sort or a priority queue.

Dijsktra's algorithm

Dijsktra's algorithm is a searching algorithm using a priority queue. It begins with inserting
the start node with a priority value of 0. All other nodes are inserted with priority values
of large N. Each node has an adjacency list of other nodes, a current distance to start node,
and previous pointer to previous node used to calculate current node. Alternative to an
adjacency list, is an adjacency matrix, which needs n x n boolean adjacencies.

The agorithm basically iterates over the priority queue, removing the front node, examining
the adjacent nodes, and updating with a distance equal to the sum of the front nodes
distance for each adjacent node , and the distance given by the adjacency information for
an adjacent node.

After each node's update, the extra operation "update priority" is used on that node :

while the node's distance is less than it's parents node (for this priority queue, parents have
lesser distances than the children), the node is swapped with the parent.

After this, while the node is greater distance than one or more of its children, it is swapped
with the least distant child, so the least distant child becomes parent of its greater distant
sibling, and parent to the greater distant current node.

With updating the priority, the adjacent node to the current node has a back pointer
changed to the current node.

The algorithm ends when the target node becomes the current node removed, and the path
to the start node can be recorded in an array by following back pointers, and then doing
something like a quick sort partition to reverse the order of the array , to give the shortest
path to target node from the start node.

Quick sort

3. Write a C program to recursively sort using the Quick sort partition exchange algorithm.

• you can use the "driver", or the random number test data from Q1. on mergesort. This
is "re-use", which is encouraged in general.

- an advantage of reuse is less writing time, debugging time, testing time.

• the concept of partition exchange is that a partition element is (randomly) selected, and
every thing that needs sorted is put into 3 equivalance

classes : those elements less than the partition value, the partition element, and everything
above (and equal to) the partition element.

172

Recursion

• this can be done without allocating more space than one temporary element space for
swapping two elements. e.g a temporary integer for integer data.

• However, where the partition element should be using the original array space is not
known.

• This is usually implemented with putting the partition on the end of the array to be
sorted, and then putting two pointers , one at the start of the array,

and one at the element next to the partition element , and repeatedly scanning the left
pointer right, and the right pointer left.

• the left scan stops when an element equal to or greater than the partition is found, and
the right scan stops for a smaller element than the partition value,

and these are swapped, which uses the temporary extra space.

• the left scan will always stop if it reaches the partition element , which is the last element;
this means the entire array is less than partition value.

• the right scan could reach the first element, if the entire array is greater than the partition
, and this needs to be tested for, else the scan doesn't stop.

• the outer loop exits when then left and right pointers cross. Testing for pointer crossing
and outer loop exit

should occur before swapping, otherwise the right pointer may be swapping a less-than-
partition element previously scanned by the left pointer.

• finally, the partition element needs to be put between the left and right partitions, once
the pointers cross.

• At pointer crossing, the left pointer may be stopped at the partition element's last
position in the array, and the right pointer not progressed past the

element just before the last element. This happens when all the elements are less than the
partition.

- if the right pointer is chosen to swap with the partition, then an incorrect state results
where the last element of the left array becomes less than the partition element value.

- if the left pointer is chosen to swap with the partition, then the left array will be less than
the partition, and partition will have swapped with an element with value greater than the
partition or the partition itself.

• The corner case of quicksorting a 2 element out-of-order array has to be examined.

- The left pointer stops on the first out of order element. The right pointer begins on the
first out-of-order element, but the outer loop exits because this is the leftmost element.
The partition element is then swapped with the left pointer's first element, and the two
elements are now in order.

- In the case of a 2 element in order array, the leftmost pointer skips the first element
which is less than the partition, and stops on the partition. The right pointer begins on
the first element and exits because it is the first position. The pointers have crossed so the
outer loop exits. The partition swaps with itself, so the in-ordering is preserved.

• After doing a swap, the left pointer should be incremented and right pointer decremented,
so the same positions aren't scanned again, because an endless loop can result (possibly

173

Beginning exercises

when the left pointer exits when the element is equal to or greater than the partition,
and the right element is equal to the partition value). One implementation, Sedgewick,
starts the pointers with the left pointer minus one and right pointer

the plus one the intended initial scan positions, and use the pre-increment and pre-decrement
operators e.g. (++i, --i) .

Solution One possible solution , can be to adapt this word sorting use of quicksort to
sort integers. Otherwise , an exercise would be to re-write non-generic qsort functions of
qsortsimp, partition, and swap for integers.

/*

* qsortsimp.h

*

* Created on: 17/03/2013

* Author: anonymous

*/

#ifndef QSORTSIMP_H_

#define QSORTSIMP_H_

#include <stdlib.h>

void qsortsimp(void* a, size_t elem_sz, int len, int(*cmp) (void*,void*));

void shutdown_qsortsimp();

#endif /* QSORTSIMP_H_ */

//--

/* qsortsimp.c

* author : anonymous

*/

#include "qsortsimp.h"

#include<stdlib.h>

#include<string.h>

static void * swap_buf =0;

static int bufsz = 0;

void swap(void* a, int i, int j, size_t elem_sz) {

if (i==j)return;

if (bufsz == 0 || bufsz < elem_sz) {

swap_buf = realloc(swap_buf, elem_sz);

bufsz=elem_sz;

}

memcpy(swap_buf, a+i*elem_sz, elem_sz);

memcpy(a+i*elem_sz, a+j*elem_sz, elem_sz);

memcpy(a+j*elem_sz, swap_buf, elem_sz);

}

void shutdown_qsortsimp() {

if (swap_buf) {

free(swap_buf);

}

}

int partition(void* a, size_t elem_sz, int len, int (*cmp)(void*,void*)) {

int i = -1;

int j = len-1;

void* v = a + j * elem_sz;

for(;;) {

174

Recursion

while((*cmp)(a + ++i * elem_sz , v) < 0);

while ((*cmp)(v, a + --j * elem_sz) < 0) if (j==0) break ;

if(i>=j)break;

swap(a, i, j, elem_sz);

}

swap(a, i, len-1, elem_sz);

return i;

}

void qsortsimp(void* a, size_t elem_sz, int len, int(*cmp) (void*,void*)) {

if (len > 2) {

int p = partition(a, elem_sz, len, cmp);

qsortsimp(a, elem_sz, p, cmp);

qsortsimp(a+(p+1)*elem_sz, elem_sz, len - p -1, cmp);

}

}

//--

/*

Name : words_quicksort.c

Author : anonymous

Version :

Copyright :

Description : quick sort the words in moby dick in C, Ansi-style

==

*/

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

#include <string.h>

#include "qsortsimp.h"

void printArray(const char* a[], int n) {

int i;

for(i=0; i < n; ++i) {

if(i!=0 && i% 5 == 0) {

printf("\n");

}

if (i%1000000 ==0) {

fprintf(stderr,"printed %d words\n", i);

}

printf("%s ", a[i]);

}

printf("\n");

}

const int MAXCHARS=250;

char ** wordlist=0;

int nwords=0;

int remaining_block;

const size_t NWORDS_PER_BLOCK = 1000;

//const char* spaces=" \t\n\r";

//inline isspace(const char ch) {

// int i=0;

// while(spaces[i]!='\0') {

// if(spaces[i++] == ch)

// return 1;

// }

175

Beginning exercises

// return 0;

//}

void freeMem() {

int i = nwords;

while(i > 0) {

free(wordlist[--i]);

}

free(wordlist);

}

static char * fname="~/Downloads/books/pg2701-moby-dick.txt";

void getWords() {

char buffer[MAXCHARS];

FILE* f = fopen(fname,"r");

int state=0;

int ch;

int i;

while ((ch=fgetc(f))!=EOF) {

if (isalnum(ch) && state==0) {

state=1;

i=0;

buffer[i++]=ch;

} else if (isalnum(ch) && i < MAXCHARS-1) {

buffer[i++]=ch;

} else if (state == 1) {

state =0;

buffer[i++]= '\0';

char* dynbuf = malloc(i);

int j;

for(j=0; j < i; ++j) {

dynbuf[j] = buffer[j];

}

i=0;

if (wordlist == 0) {

wordlist = calloc(NWORDS_PER_BLOCK, sizeof(char*));

remaining_block = NWORDS_PER_BLOCK;

} else if (remaining_block == 0) {

wordlist = realloc(wordlist, (NWORDS_PER_BLOCK + nwords)*

sizeof(char*));

remaining_block = NWORDS_PER_BLOCK;

fprintf(stderr,"allocated block %d , nwords = %d\n",

remaining_block, nwords);

}

wordlist[nwords++]= dynbuf;

--remaining_block;

}

}

fclose(f);

}

void testPrintArray() {

int i;

for(i=0; i < nwords;++i) {

printf("%s | ", wordlist[i]);

}

putchar('\n');

176

Recursion

printf("stored %d words. \n",nwords);

}

int cmp_str_1(void* a, void *b) {

int r = strcasecmp(*((char**)a),*((char**)b));

return r;

}

int main(int argc, char* argv[]) {

if (argc > 1) {

fname = argv[1];

}

getWords();

testPrintArray();

qsortsimp(wordlist, sizeof(char*), nwords, &cmp_str_1);

testPrintArray();

shutdown_qsortsimp();

freeMem();

puts("!!!Hello World!!!"); /* prints !!!Hello World!!! */

return EXIT_SUCCESS;

}

et:Programmeerimiskeel C/Harjutused2 pl:C/Ćwiczenia dla początkujących3

2 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FHarjutused

3 http://pl.wikibooks.org/wiki/C%2F%C4%86wiczenia%20dla%20pocz%C4%85tkuj%C4%85cych

177

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FHarjutused
http://pl.wikibooks.org/wiki/C%2F%C4%86wiczenia%20dla%20pocz%C4%85tkuj%C4%85cych

23 In-depth C ideas

179

24 Arrays

Arrays in C act to store related data under a single variable name with an index, also known
as a subscript. It is easiest to think of an array as simply a list or ordered grouping for
variables of the same type. As such, arrays often help a programmer organize collections of
data efficiently and intuitively.

Later we will consider the concept of a pointer, fundamental to C, which extends the nature
of the array (array can be termed as a constant pointer). For now, we will consider just
their declaration and their use.

24.1 Arrays

If we want an 2D array of six integers (or numbers), we write in C:

int numbers[3][2];

For a SIX character array called letters,

char letters[6];

and so on.

If we wish to initialize as we declare, we write:

int point[6]={0,0,1,0,0,0};

Though when the array is initialized as in this case, the array dimension may be omitted,
and the array will be automatically sized to hold the initial data:

int point[]={0,0,1,0,0,0};

This is very useful in that the size of the array can be controlled by simply adding or
removing initializer elements from the definition without the need to adjust the dimension.

If the dimension is specified, but not all elements in the array are initialized, the remaining
elements will contain a value of 0. This is very useful, especially when we have very large
arrays.

int numbers[2000]={245};

The above example sets the first value of the array to 245, and the rest to 0.

If we want to access a variable stored in an array, for example with the above declaration,
the following code will store a 1 in the variable x

181

Arrays

int x;

x = point[2];

Arrays in C are indexed starting at 0, as opposed to starting at 1. The first element of the
array above is point[0]. The index to the last value in the array is the array size minus
one. In the example above the subscripts run from 0 through 5. C does not guarantee
bounds checking on array accesses. The compiler may not complain about the following
(though the best compilers do):

char y;

int z = 9;

char point[6] = { 1, 2, 3, 4, 5, 6 };

//examples of accessing outside the array. A compile error is not always raised

y = point[15];

y = point[-4];

y = point[z];

During program execution, an out of bounds array access does not always cause a run
time error. Your program may happily continue after retrieving a value from point[-1]. To
alleviate indexing problems, the sizeof() expression is commonly used when coding loops
that process arrays.

int ix;

short anArray[]= { 3, 6, 9, 12, 15 };

for (ix=0; ix< (sizeof(anArray)/sizeof(short)); ++ix) {

DoSomethingWith("%d", anArray[ix]);

}

Notice in the above example, the size of the array was not explicitly specified. The compiler
knows to size it at 5 because of the five values in the initializer list. Adding an additional
value to the list will cause it to be sized to six, and because of the sizeof expression in the
for loop, the code automatically adjusts to this change. Good programming practice is to
declare a variable size , and store the number of elements in the array in it.

size = sizeof(anArray)/sizeof(short)

C also supports multi dimensional arrays (or, rather, arrays of arrays). The simplest type
is a two dimensional array. This creates a rectangular array - each row has the same
number of columns. To get a char array with 3 rows and 5 columns we write in C

char two_d[3][5];

To access/modify a value in this array we need two subscripts:

char ch;

ch = two_d[2][4];

or

two_d[0][0] = 'x';

Similarly, a multi-dimensional array can be initialized like this:

182

Strings

int two_d[2][3] = {{ 5, 2, 1 },

{ 6, 7, 8 }};

The amount of columns must be explicitly stated; however, the compiler will find the
appropriate amount of rows based on the initializer list.

There are also weird notations possible:

int a[100];

int i = 0;

if (a[i]==i[a])

{

printf("Hello world!\n");

}

a[i] and i[a] refer to the same location. (This is explained later in the next Chapter.)

24.2 Strings

Figure 1 String "Merkkijono" stored in memory

C has no string handling facilities built in; consequently, strings are defined as arrays of
characters. C allows a character array to be represented by a character string rather than a
list of characters, with the null terminating character automatically added to the end. For
example, to store the string "Merkkijono", we would write

char string[] = "Merkkijono";

or

char string[] = {'M', 'e', 'r', 'k', 'k', 'i', 'j', 'o', 'n', 'o', '\0'};

In the first example, the string will have a null character automatically appended to the
end by the compiler; by convention, library functions expect strings to be terminated by a
null character. The latter declaration indicates individual elements, and as such the null
terminator needs to be added manually.

Strings do not always have to be linked to an explicit variable. As you have seen already, a
string of characters can be created directly as an unnamed string that is used directly (as
with the printf functions.)

To create an extra long string, you will have to split the string into multiple sections, by
closing the first section with a quote, and recommencing the string on the next line (also
starting and ending in a quote):

char string[] = "This is a very, very long "

"string that requires two lines.";

183

Arrays

While strings may also span multiple lines by putting the backslash character at the end of
the line, this method is deprecated.

There is a useful library of string handling routines which you can use by including another
header file.

#include <string.h> //new header file

This standard string library will allow various tasks to be performed on strings, and is
discussed in the Strings1 chapter.

et:Programmeerimiskeel C/Massiivid2 it:C/Vettori e puntatori/Vettori3 pl:C/Tablice4

fi:C/Taulukot5

1 Chapter 27 on page 205
2 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMassiivid

3 http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FVettori

4 http://pl.wikibooks.org/wiki/C%2FTablice

5 http://fi.wikibooks.org/wiki/C%2FTaulukot

184

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FMassiivid
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FVettori
http://pl.wikibooks.org/wiki/C%2FTablice
http://fi.wikibooks.org/wiki/C%2FTaulukot

25 Pointers and arrays

Figure 2 Pointer a pointing variable
b. Note that b stores number, whereas a
stores address of b in memory (1462)

A pointer1 is a value that designates the address (i.e., the location in memory), of some
value. There are four fundamental things you need to know about pointers:

• How to declare them
• How to assign to them
• How to reference the value to which the pointer points (known as dereferencing) and
• How they relate to arrays

We'll also discuss the relationship of pointers with text strings and the more advanced
concept of function pointers.

Pointers are variables that hold a memory location. One can access the value of the variable
pointed to using the dereferencing operator '*'.

Pointers can reference any data type, even functions.

1 http://en.wikipedia.org/wiki/Pointer%20%28computing%29

185

http://en.wikipedia.org/wiki/Pointer%20%28computing%29

Pointers and arrays

The vast majority of arrays in C are simple lists, also called "1 dimensional arrays". We
will briefly cover multi-dimensional arrays in a later chapter2.

25.1 Declaring pointers

Consider the following snippet of code which declares two pointers:

<source lang="c" line start=1>

struct MyStruct {

int m_aNumber;

float num2;

};

int * pJ2;

struct MyStruct * pAnItem;

</source>

Lines 1-4 define a structure3. Line 6 declares a variable which points to an int, and line
7 declares a variable which points to something with structure MyStruct. So to declare
a variable as something which points to some type, rather than contains some type, the
asterisk (*) is placed before the variable name.

In the following, line 1 declares var1 as a pointer to a long and var2 as a long and not a
pointer to a long. In line 2, p3 is declared as a pointer to a pointer to an int.

<source lang="c" line start=1>

long * var1, var2;

int ** p3;

</source>

Pointer types are often used as parameters to function calls. The following shows how to
declare a function which uses a pointer as an argument. Since C passes function arguments
by value, in order to allow a function to modify a value from the calling routine, a pointer
to the value must be passed. Pointers to structures are also used as function arguments
even when nothing in the struct will be modified in the function. This is done to avoid
copying the complete contents of the structure onto the stack. More about pointers as
function arguments later.

2 Chapter 30.1 on page 231
3 Chapter 28.1.2 on page 222

186

Assigning values to pointers

int MyFunction(struct MyStruct *pStruct);

25.2 Assigning values to pointers

So far we've discussed how to declare pointers. The process of assigning values to pointers
is next. To assign a pointer the address of a variable, the & or 'address of' operator is used.

int myInt;

int *pPointer;

struct MyStruct dvorak;

struct MyStruct *pKeyboard;

pPointer = &myInt;

pKeyboard = &dvorak;

Here, pPointer will now reference myInt and pKeyboard will reference dvorak.

Pointers can also be assigned to reference dynamically allocated memory. The malloc() and
calloc() functions are often what are used to do this.

#include <stdlib.h>

/* ... */

struct MyStruct *pKeyboard;

/* ... */

pKeyboard = malloc(sizeof *pKeyboard);

The malloc function returns a pointer to dynamically allocated memory (or NULL if un-
successful). The size of this memory will be appropriately sized to contain the MyStruct
structure.

The following is an example showing one pointer being assigned to another and of a pointer
being assigned a return value from a function.

static struct MyStruct val1, val2, val3, val4;

struct MyStruct *ASillyFunction(int b)

{

struct MyStruct *myReturn;

if (b == 1) myReturn = &val1;

else if (b==2) myReturn = &val2;

else if (b==3) myReturn = &val3;

else myReturn = &val4;

return myReturn;

}

struct MyStruct *strPointer;

int *c, *d;

int j;

c = &j; /* pointer assigned using & operator */

d = c; /* assign one pointer to another */

strPointer = ASillyFunction(3); /* pointer returned from a function. */

When returning a pointer from a function, do not return a pointer that points to a value
that is local to the function or that is a pointer to a function argument. Pointers to local

187

Pointers and arrays

variables become invalid when the function exits. In the above function, the value returned
points to a static variable. Returning a pointer to dynamically allocated memory is also
valid.

25.3 Pointer dereferencing

Figure 3 The pointer p points to the variable a.

To access a value to which a pointer points, the * operator is used. Another operator, the
-> operator is used in conjunction with pointers to structures. Here's a short example.

int c, d;

int *pj;

struct MyStruct astruct;

struct MyStruct *bb;

c = 10;

pj = &c; /* pj points to c */

d = *pj; /* d is assigned the value to which pj points, 10 */

pj = &d; /* now points to d */

pj = 12; / d is now 12 */

bb = &astruct;

(*bb).m_aNumber = 3; /* assigns 3 to the m_aNumber member of astruct */

bb->num2 = 44.3; /* assigns 44.3 to the num2 member of astruct */

pj = bb->m_aNumber; / eqivalent to d = astruct.m_aNumber; */

The expression bb->m_aNumber is entirely equivalent to (*bb).m_aNumber. They both
access the m_aNumber element of the structure pointed to by bb. There is one more way of
dereferencing a pointer, which will be discussed in the following section.

When dereferencing a pointer that points to an invalid memory location, an error often
occurs which results in the program terminating. The error is often reported as a seg-
mentation error. A common cause of this is failure to initialize a pointer before trying to
dereference it.

C is known for giving you just enough rope to hang yourself, and pointer dereferencing is a
prime example. You are quite free to write code that accesses memory outside that which
you have explicitly requested from the system. And many times, that memory may appear
as available to your program due to the vagaries of system memory allocation. However,
even if 99 executions allow your program to run without fault, that 100th execution may
be the time when your "memory pilfering" is caught by the system and the program fails.
Be careful to ensure that your pointer offsets are within the bounds of allocated memory!

188

Pointers and Arrays

The declaration void *somePointer; is used to declare a pointer of some nonspecified
type. You can assign a value to a void pointer, but you must cast the variable to point to
some specified type before you can dereference it. Pointer arithmetic is also not valid with
void * pointers.

25.4 Pointers and Arrays

Up to now, we've carefully been avoiding discussing arrays in the context of pointers. The
interaction of pointers and arrays can be confusing but here are two fundamental statements
about it:

• A variable declared as an array of some type acts as a pointer to that type. When used
by itself, it points to the first element of the array.

• A pointer can be indexed like an array name.

The first case often is seen to occur when an array is passed as an argument to a function.
The function declares the parameter as a pointer, but the actual argument may be the name
of an array. The second case often occurs when accessing dynamically allocated memory.
Let's look at examples of each. In the following code, the call to calloc() effectively allocates
an array of struct MyStruct items.

float KrazyFunction(struct MyStruct *parm1, int p1size, int bb)

{

int ix; //declaring an integer variable//

for (ix=0; ix<p1size; ix++) {

if (parm1[ix].m_aNumber == bb)

return parm1[ix].num2;

}

return 0.0f;

}

/* ... */

struct MyStruct myArray[4];

#define MY_ARRAY_SIZE (sizeof(myArray)/sizeof(*myArray))

float v3;

struct MyStruct *secondArray;

int someSize;

int ix;

/* initialization of myArray ... */

v3 = KrazyFunction(myArray, MY_ARRAY_SIZE, 4);

/* ... */

secondArray = calloc(someSize, sizeof(myArray));

for (ix=0; ix<someSize; ix++) {

secondArray[ix].m_aNumber = ix *2;

secondArray[ix].num2 = .304 * ix * ix;

}

Pointers and array names can pretty much be used interchangeably. There are exceptions.
You cannot assign a new pointer value to an array name. The array name will always point
to the first element of the array. In the function KrazyFunction above, you could however
assign a new value to parm1, as it is just a pointer to the first element of myArray. It is also
valid for a function to return a pointer to one of the array elements from an array passed
as an argument to a function. A function should never return a pointer to a local variable,
even though the compiler will probably not complain.

189

Pointers and arrays

When declaring parameters to functions, declaring an array variable without a size is equiva-
lent to declaring a pointer. Often this is done to emphasize the fact that the pointer variable
will be used in a manner equivalent to an array.

/* two equivalent function definitions */

int LittleFunction(int *paramN);

int LittleFunction(int paramN[]);

Now we're ready to discuss pointer arithmetic. You can add and subtract integer val-
ues to/from pointers. If myArray is declared to be some type of array, the expression
*(myArray+j), where j is an integer, is equivalent to myArray[j]. So for instance in the
above example where we had the expression secondArray[i].num2, we could have written
that as *(secondArray+i).num2 or more simply (secondArray+i)->num2.

Note that for addition and subtraction of integers and pointers, the value of the pointer is
not adjusted by the integer amount, but is adjusted by the amount multiplied by the size
(in bytes) of the type to which the pointer refers. One pointer may also be subtracted from
another, provided they point to elements of the same array (or the position just beyond the
end of the array). If you have a pointer that points to an element of an array, the index
of the element is the result when the array name is subtracted from the pointer. Here's an
example.

struct MyStruct someArray[20];

struct MyStruct *p2;

int idx;

.

/* array initialization .. */

.

for (p2 = someArray; p2 < someArray+20; ++p2) {

if (p2->num2 > testValue) break;

}

idx = p2 - someArray;

You may be wondering how pointers and multidimensional arrays interact. Let's look at
this a bit in detail. Suppose A is declared as a two dimensional array of floats (float

A[D1][D2];) and that pf is declared a pointer to a float. If pf is initialized to point to
A[0][0], then *(pf+1) is equivalent to A[0][1] and *(pf+D2) is equivalent to A[1][0]. The
elements of the array are stored in row-major order.

float A[6][8];

float *pf;

pf = &A[0][0];

(pf+1) = 1.3; / assigns 1.3 to A[0][1] */

(pf+8) = 2.3; / assigns 2.3 to A[1][0] */

Let's look at a slightly different problem. We want to have a two dimensional array, but
we don't need to have all the rows the same length. What we do is declare an array of
pointers. The second line below declares A as an array of pointers. Each pointer points to
a float. Here's some applicable code:

float linearA[30];

float *A[6];

190

Pointers in Function Arguments

A[0] = linearA; /* 5 - 0 = 5 elements in row */

A[1] = linearA + 5; /* 11 - 5 = 6 elements in row */

A[2] = linearA + 11; /* 15 - 11 = 4 elements in row */

A[3] = linearA + 15; /* 21 - 15 = 6 elements */

A[4] = linearA + 21; /* 25 - 21 = 4 elements */

A[5] = linearA + 25; /* 30 - 25 = 5 elements */

A[3][2] = 3.66; /* assigns 3.66 to linearA[17]; */

A[3][-3] = 1.44; /* refers to linearA[12];

negative indices are sometimes useful. But avoid

using them as much as possible. */

We also note here something curious about array indexing. Suppose myArray is an array and
idx is an integer value. The expression myArray[idx] is equivalent to idx[myArray]. The
first is equivalent to *(myArray+idx), and the second is equivalent to *(idx+myArray).
These turn out to be the same, since the addition is commutative.

Pointers can be used with preincrement or post decrement, which is sometimes done within
a loop, as in the following example. The increment and decrement applies to the pointer,
not to the object to which the pointer refers. In other words, *pArray++ is equivalent to
*(pArray++).

long myArray[20];

long *pArray;

int i;

/* Assign values to the entries of myArray */

pArray = myArray;

for (i=0; i<10; ++i) {

*pArray++ = 5 + 3*i + 12*i*i;

*pArray++ = 6 + 2*i + 7*i*i;

}

25.5 Pointers in Function Arguments

Often we need to invoke a function with an argument that is itself a pointer. In many
instances, the variable is itself a parameter for the current function and may be a pointer
to some type of structure. The ampersand character is not needed in this circumstance
to obtain a pointer value, as the variable is itself a pointer. In the example below, the
variable pStruct, a pointer, is a parameter to function FunctTwo, and is passed as an
argument to FunctOne. The second parameter to FunctOne is an int. Since in function
FunctTwo, mValue is a pointer to an int, the pointer must first be dereferenced using the *
operator, hence the second argument in the call is *mValue. The third parameter to function
FunctOne is a pointer to a long. Since pAA is itself a pointer to a long, no ampersand is
needed when it is used as the third argument to the function.

int FunctOne(struct SomeStruct *pValue, int iValue, long *lValue)

{

/* do some stuff ... */

return 0;

}

int FunctTwo(struct someStruct *pStruct, int *mValue)

{

int j;

long AnArray[25];

long *pAA;

191

Pointers and arrays

pAA = &AnArray[13];

j = FunctOne(pStruct, *mValue, pAA);

return j;

}

25.6 Pointers and Text Strings

Historically, text strings in C have been implemented as arrays of characters, with the last
byte in the string being a zero, or the null character '\0'. Most C implementations come
with a standard library of functions for manipulating strings. Many of the more commonly
used functions expect the strings to be null terminated strings of characters. To use these
functions requires the inclusion of the standard C header file "string.h".

A statically declared, initialized string would look similar to the following:

static const char *myFormat = "Total Amount Due: %d";

The variable myFormat can be viewed as an array of 21 characters. There is an implied
null character ('\0') tacked on to the end of the string after the 'd' as the 21st item in the
array. You can also initialize the individual characters of the array as follows:

static const char myFlower[] = { 'P', 'e', 't', 'u', 'n', 'i', 'a', '\0' };

An initialized array of strings would typically be done as follows:

static const char *myColors[] = {

"Red", "Orange", "Yellow", "Green", "Blue", "Violet" };

The initilization of an especially long string can be split across lines of source code as follows.

static char *longString = "Hello. My name is Rudolph and I work as a reindeer "

"around Christmas time up at the North Pole. My boss is a really swell guy."

" He likes to give everybody gifts.";

The library functions that are used with strings are discussed in a later chapter.

25.7 Pointers to Functions

C also allows you to create pointers to functions. Pointers to functions can get rather messy.
Declaring a typedef to a function pointer generally clarifies the code. Here's an example that
uses a function pointer, and a void * pointer to implement what's known as a callback. The
DoSomethingNice function invokes a caller supplied function TalkJive with caller data.
Note that DoSomethingNice really doesn't know anything about what dataPointerrefers
to.

192

Pointers to Functions

typedef int (*MyFunctionType)(int, void *); /* a typedef for a function

pointer */

#define THE_BIGGEST 100

int DoSomethingNice(int aVariable, MyFunctionType aFunction, void *dataPointer

)

{

int rv = 0;

if (aVariable < THE_BIGGEST) {

/* invoke function through function pointer (old style) */

rv = (*aFunction)(aVariable, dataPointer);

} else {

/* invoke function through function pointer (new style) */

rv = aFunction(aVariable, dataPointer);

};

return rv;

}

typedef struct {

int colorSpec;

char *phrase;

} DataINeed;

int TalkJive(int myNumber, void *someStuff)

{

/* recast void * to pointer type specifically needed for this function */

DataINeed *myData = someStuff;

/* talk jive. */

return 5;

}

static DataINeed sillyStuff = { BLUE, "Whatcha talkin 'bout Willis?" };

/* ... */

DoSomethingNice(41, &TalkJive, &sillyStuff);

Some versions of C may not require an ampersand preceding the TalkJive argument in the
DoSomethingNice call. Some implementations may require specifically casting the argument
to the MyFunctionType type, even though the function signature exacly matches that of
the typedef.

Function pointers can be useful for implementing a form of polymorphism in C. First one
declares a structure having as elements function pointers for the various operations to that
can be specified polymorphically. A second base object structure containing a pointer to
the previous structure is also declared. A class is defined by extending the second structure
with the data specific for the class, and static variable of the type of the first structure,
containing the addresses of the functions that are associated with the class. This type of
polymorphism is used in the standard library when file I/O functions are called.

A similar mechanism can also be used for implementing a state machine in C. A structure
is defined which contains function pointers for handling events that may occur within state,
and for functions to be invoked upon entry to and exit from the state. An instance of
this structure corresponds to a state. Each state is initialized with pointers to functions
appropriate for the state. The current state of the state machine is in effect a pointer to
one of these states. Changing the value of the current state pointer effectively changes
the current state. When some event occurs, the appropriate function is called through a
function pointer in the current state.

193

Pointers and arrays

25.8 Practical use of function pointers in C

Function pointers are mainly used to reduce the complexity of switch statement. Example
with switch statement:

#include <stdio.h>

int add(int a, int b);

int sub(int a, int b);

int mul(int a, int b);

int div(int a, int b);

int main()

{

int i, result;

int a=10;

int b=5;

printf("Enter the value between 0 and 3 : ");

scanf("%d",&i);

switch(i)

{

case 0: result = add(a,b); break;

case 1: result = sub(a,b); break;

case 2: result = mul(a,b); break;

case 3: result = div(a,b); break;

}

}

int add(int i, int j)

{

return (i+j);

}

int sub(int i, int j)

{

return (i-j);

}

int mul(int i, int j)

{

return (i*j);

}

int div(int i, int j)

{

return (i/j);

}

Without using a switch statement:

#include <stdio.h>

int add(int a, int b);

int sub(int a, int b);

int mul(int a, int b);

int div(int a, int b);

int (*oper[4])(int a, int b) = {add, sub, mul, div};

int main()

{

int i,result;

int a=10;

int b=5;

printf("Enter the value between 0 and 3 : ");

scanf("%d",&i);

result = oper[i](a,b);

}

int add(int i, int j)

{

return (i+j);

}

int sub(int i, int j)

194

Practical use of function pointers in C

{

return (i-j);

}

int mul(int i, int j)

{

return (i*j);

}

int div(int i, int j)

{

return (i/j);

}

Function pointers may be used to create a struct member function:

typedef struct

{

int (*open)(void);

void (*close)(void);

int (*register)(void);

} device;

int my_device_open(void)

{

/* ... */

}

void my_device_close(void)

{

/* ... */

}

void register_device(void)

{

/* ... */

}

device create(void)

{

device my_device;

my_device.open = my_device_open;

my_device.close = my_device_close;

my_device.register = register_device;

my_device.register();

return my_device;

}

Use to implement this pointer (following code must be placed in library).

static struct device_data

{

/* ... here goes data of structure ... */

};

static struct device_data obj;

typedef struct

{

int (*open)(void);

void (*close)(void);

int (*register)(void);

} device;

static struct device_data create_device_data(void)

{

struct device_data my_device_data;

/* ... here goes constructor ... */

195

Pointers and arrays

return my_device_data;

}

/* here I omit the my_device_open, my_device_close and register_device functions

*/

device create_device(void)

{

device my_device;

my_device.open = my_device_open;

my_device.close = my_device_close;

my_device.register = register_device;

my_device.register();

return my_device;

}

25.9 Examples of pointer constructs

Below are some example constructs which may aid in creating your pointer.

int i; // integer variable 'i'

int *p; // pointer 'p' to an integer

int a[]; // array 'a' of integers

int f(); // function 'f' with return value of type integer

int **pp; // pointer 'pp' to a pointer to an integer

int (*pa)[]; // pointer 'pa' to an array of integer

int (*pf)(); // pointer 'pf' to a function with return value integer

int *ap[]; // array 'ap' of pointers to an integer

int *fp(); // function 'fp' which returns a pointer to an integer

int ***ppp; // pointer 'ppp' to a pointer to a pointer to an integer

int (**ppa)[]; // pointer 'ppa' to a pointer to an array of integers

int (**ppf)(); // pointer 'ppf' to a pointer to a function with return value of

type integer

int *(*pap)[]; // pointer 'pap' to an array of pointers to an integer

int *(*pfp)(); // pointer 'pfp' to function with return value of type pointer

to an integer

int **app[]; // array of pointers 'app' that point to pointers to integer

values

int (*apa[])[];// array of pointers 'apa' to arrays of integers

int (*apf[])();// array of pointers 'apf' to functions with return values of

type integer

int ***fpp(); // function 'fpp' which returns a pointer to a pointer to a

pointer to an int

int (*fpa())[];// function 'fpa' with return value of a pointer to array of

integers

int (*fpf())();// function 'fpf' with return value of a pointer to function

which returns an integer

25.10 sizeof

The sizeof operator is often used to refer to the size of a static array declared earlier in the
same function.

To find the end of an array (example from wikipedia:Buffer overflow4):

4 http://en.wikipedia.org/wiki/Buffer%20overflow

196

http://en.wikipedia.org/wiki/Buffer%20overflow

sizeof

/* better.c - demonstrates one method of fixing the problem */

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{

char buffer[10];

if (argc < 2)

{

fprintf(stderr, "USAGE: %s string\n", argv[0]);

return 1;

}

strncpy(buffer, argv[1], sizeof(buffer));

buffer[sizeof(buffer) - 1] = '\0';

return 0;

}

To iterate over every element of an array, use

#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

for(i = 0; i < NUM_ELEM(array); i++)

{

/* do something with array[i] */

;

}

Note that the sizeof operator only works on things defined earlier in the same function.
The compiler replaces it with some fixed constant number. In this case, the buffer was
declared as an array of 10 char's earlier in the same function, and the compiler replaces
sizeof(buffer) with the number 10 at compile time (equivalent to us hard-coding 10 into
the code in place of sizeof(buffer)). The information about the length of buffer is not
actually stored anywhere in memory (unless we keep track of it separately) and cannot be
programmatically obtained at run time from the array/pointer itself.

Often a function needs to know the size of an array it was given -- an array defined in some
other function. For example,

/* broken.c - demonstrates a flaw */

#include <stdio.h>

#include <string.h>

#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

int sum(int input_array[]){

int sum_so_far = 0;

int i;

for(i = 0; i < NUM_ELEM(input_array); i++) // WON'T WORK -- input_array

wasn't defined in this function.

{

sum_so_far += input_array[i];

};

return(sum_so_far);

}

int main(int argc, char *argv[])

{

int left_array[] = { 1, 2, 3 };

int right_array[] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };

int the_sum = sum(left_array);

printf("the sum of left_array is: %d", the_sum);

197

Pointers and arrays

the_sum = sum(right_array);

printf("the sum of right_array is: %d", the_sum);

return 0;

}

Unfortunately, (in C and C++) the length of the array cannot be obtained from an array
passed in at run time, because (as mentioned above) the size of an array is not stored
anywhere. The compiler always replaces sizeof with a constant. This sum() routine needs
to handle more than just one constant length of an array.

There are some common ways to work around this fact:

• Write the function to require, for each array parameter, a "length" parameter (which has
type "size_t"). (Typically we use sizeof at the point where this function is called).

• Use of a convention, such as a null-terminated string5 to mark the end of the array.
• Instead of passing raw arrays, pass a structure that includes the length of the array (such

as ".length") as well as the array (or a pointer to the first element); similar to the string

or vector classes in C++.

/* fixed.c - demonstrates one work-around */

#include <stdio.h>

#include <string.h>

#define NUM_ELEM(x) (sizeof (x) / sizeof (*(x)))

int sum(int input_array[], size_t length){

int sum_so_far = 0;

int i;

for(i = 0; i < length; i++)

{

sum_so_far += input_array[i];

};

return(sum_so_far);

}

int main(int argc, char *argv[])

{

int left_array[] = { 1, 2, 3, 4 };

int right_array[] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };

int the_sum = sum(left_array, NUM_ELEM(left_array)); // works here, because

left_array is defined in this function

printf("the sum of left_array is: %d", the_sum);

the_sum = sum(right_array, NUM_ELEM(right_array)); // works here, because

right_array is defined in this function

printf("the sum of right_array is: %d", the_sum);

return 0;

}

It's worth mentioning that sizeof operator has two variations: sizeof (type) (for in-
stance: sizeof (int) or sizeof (struct some_structure)) and sizeof expression

(for instance: sizeof some_variable.some_field or sizeof 1).

5 http://en.wikipedia.org/wiki/null-terminated%20string

198

http://en.wikipedia.org/wiki/null-terminated%20string

External Links

25.11 External Links

• C Reference Card (ANSI)6

• "Common Pointer Pitfalls"7 by Dave Marshall
• "Further insights into size_t"8 by Dan Saks 2007
• "Pointer Fun with Binky"9

de:C-Programmierung: Zeiger10 it:C/Vettori e puntatori/Interscambiabilità tra puntatori e
vettori11 pl:C/Wskaźniki12

6 http://www.digilife.be/quickreferences/QRC/C%20Reference%20Card%20(ANSI)%202.2.pdf

7 http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTION001080000000000000000

8 http://www.embedded.com/columns/programmingpointers/201803576

9 http://en.wikibooks.org/wiki/%3AFile%3APointer%20Fun%20with%20Binky%20%28C%29.ogg

10 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Zeiger

11
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FInterscambiabilit%C3%A0%

20tra%20puntatori%20e%20vettori
12 http://pl.wikibooks.org/wiki/C%2FWska%C5%BAniki

199

http://www.digilife.be/quickreferences/QRC/C%20Reference%20Card%20(ANSI)%202.2.pdf
http://www.cs.cf.ac.uk/Dave/C/node10.html#SECTION001080000000000000000
http://www.embedded.com/columns/programmingpointers/201803576
http://en.wikibooks.org/wiki/%3AFile%3APointer%20Fun%20with%20Binky%20%28C%29.ogg
http://de.wikibooks.org/wiki/C-Programmierung%3A%20Zeiger
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FInterscambiabilit%C3%A0%20tra%20puntatori%20e%20vettori
http://it.wikibooks.org/wiki/C%2FVettori%20e%20puntatori%2FInterscambiabilit%C3%A0%20tra%20puntatori%20e%20vettori
http://pl.wikibooks.org/wiki/C%2FWska%C5%BAniki

26 Memory management

In C, you have already considered creating variables for use in the program. You have
created some arrays for use, but you may have already noticed some limitations:

• the size of the array must be known beforehand
• the size of the array cannot be changed in the duration of your program

Dynamic memory allocation in C is a way of circumventing these problems.

26.1 EXAMPLE

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);

void free(void *ptr);

void *malloc(size_t size);

void *realloc(void *ptr, size_t size);

The C function malloc is the means of implementing dynamic memory allocation. It is
defined in stdlib.h or malloc.h, depending on what operating system you may be using.
Malloc.h contains only the definitions for the memory allocation functions and not the rest
of the other functions defined in stdlib.h. Usually you will not need to be so specific in your
program, and if both are supported, you should use <stdlib.h>, since that is ANSI C, and
what we will use here.

The corresponding call to release allocated memory back to the operating system is free.

When dynamically allocated memory is no longer needed, free should be called to release
it back to the memory pool. Overwriting a pointer that points to dynamically allocated
memory can result in that data becoming inaccessible. If this happens frequently, eventually
the operating system will no longer be able to allocate more memory for the process. Once
the process exits, the operating system is able to free all dynamically allocated memory
associated with the process.

Let's look at how dynamic memory allocation can be used for arrays.

Normally when we wish to create an array we use a declaration such as

int array[10];

Recall array can be considered a pointer which we use as an array. We specify the length
of this array is 10 ints. After array[0], nine other integers have space to be stored
consecutively.

Sometimes it is not known at the time the program is written how much memory will be
needed for some data. In this case we would want to dynamically allocate required memory

201

Memory management

after the program has started executing. To do this we only need to declare a pointer, and
invoke malloc when we wish to make space for the elements in our array, or, we can tell
malloc to make space when we first initialize the array. Either way is acceptable and useful.

We also need to know how much an int takes up in memory in order to make room for it;
fortunately this is not difficult, we can use C's builtin sizeof operator. For example, if
sizeof(int) yields 4, then one int takes up 4 bytes. Naturally, 2*sizeof(int) is how
much memory we need for 2 ints, and so on.

So how do we malloc an array of ten ints like before? If we wish to declare and make
room in one hit, we can simply say

int *array = malloc(10*sizeof(int));

We only need to declare the pointer; malloc gives us some space to store the 10 ints, and
returns the pointer to the first element, which is assigned to that pointer.

Important note! malloc does not initialize the array; this means that the array may
contain random or unexpected values! Like creating arrays without dynamic allocation, the
programmer must initialize the array with sensible values before using it. Make sure you
do so, too. (See later the function memset for a simple method.)

It is not necessary to immediately call malloc after declaring a pointer for the allocated
memory. Often a number of statements exist between the declaration and the call to malloc,
as follows:

int *array = NULL;

printf("Hello World!!!");

/* more statements */

array = malloc(10*sizeof(int)); /* delayed allocation */

/* use the array */

26.1.1 Error checking

When we want to use malloc, we have to be mindful that the pool of memory available
to the programmer is finite. As such, we can conceivably run out of memory! In this case,
malloc will return NULL. In order to stop the program crashing from having no more memory
to use, one should always check that malloc has not returned NULL before attempting to
use the memory; we can do this by

int *pt = malloc(3 * sizeof(int));

if(pt == NULL)

{

fprintf(stderr, "Out of memory, exiting\n");

exit(1);

}

Of course, suddenly quitting as in the above example is not always appropriate, and de-
pends on the problem you are trying to solve and the architecture you are programming for.
For example, if the program is a small, non critical application that's running on a desktop
quitting may be appropriate. However if the program is some type of editor running on
a desktop, you may want to give the operator the option of saving his tediously entered

202

The calloc function

information instead of just exiting the program. A memory allocation failure in an embed-
ded processor, such as might be in a washing machine, could cause an automatic reset of
the machine. For this reason, many embedded systems designers avoid dynamic memory
allocation altogether.

26.2 The calloc function

The calloc function allocates space for an array of items and initilizes the memory to
zeros. The call mArray = calloc(count, sizeof(struct V)) allocates count objects,
each of whose size is sufficient to contain an instance of the structure struct V. The space
is initialized to all bits zero. The function returns either a pointer to the allocated memory
or, if the allocation fails, NULL.

26.3 The realloc function

void * realloc (void * ptr, size_t size);

The realloc function changes the size of the object pointed to by ptr to the size specified
by size. The contents of the object shall be unchanged up to the lesser of the new and
old sizes. If the new size is larger, the value of the newly allocated portion of the object
is indeterminate. If ptr is a null pointer, the realloc function behaves like the malloc

function for the specified size. Otherwise, if ptr does not match a pointer earlier returned
by the calloc, malloc, or realloc function, or if the space has been deallocated by a
call to the free or realloc function, the behavior is undefined. If the space cannot be
allocated, the object pointed to by ptr is unchanged. If size is zero and ptr is not a null
pointer, the object pointed to is freed. The realloc function returns either a null pointer
or a pointer to the possibly moved allocated object.

26.4 The free function

Memory that has been allocated using malloc, realloc, or calloc must be released back
to the system memory pool once it is no longer needed. This is done to avoid perpetually
allocating more and more memory, which could result in an eventual memory allocation
failure. Memory that is not released with free is however released when the current program
terminates on most operating systems. Calls to free are as in the following example.

int *myStuff = malloc(20 * sizeof(int));

if (myStuff != NULL)

{

/* more statements here */

/* time to release myStuff */

free(myStuff);

}

203

Memory management

26.4.1 free with recursive data structures

It should be noted that free is neither intelligent nor recursive. The following code that
depends on the recursive application of free to the internal variables of a struct1 does not
work.

typedef struct BSTNode

{

int value;

struct BSTNode* left;

struct BSTNode* right;

} BSTNode;

// Later: ...

BSTNode* temp = (BSTNode*) calloc(1, sizeof(BSTNode));

temp->left = (BSTNode*) calloc(1, sizeof(BSTNode));

// Later: ...

free(temp); // WRONG! don't do this!

The statement "free(temp);" will not free temp->left, causing a memory leak.

Because C does not have a garbage collector, C programmers are responsible for making
sure there is a free() exactly once for each time there is a malloc(). If a tree has been
allocated one node at a time, then it needs to be freed one node at a time.

26.4.2 Don't free undefined pointers

Furthermore, using free when the pointer in question was never allocated in the first place
often crashes or leads to mysterious bugs further along.

To avoid this problem, always initialize pointers when they are declared. Either use malloc

at the point they are declared (as in most examples in this chapter), or set them to NULL

when they are declared (as in the "delayed allocation" example in this chapter). 2

26.5 References

1 Chapter 28 on page 221
2 "Bug 478901 ... libpng-1.2.34 and earlier might free undefined pointers" ˆ{https://bugzilla.

mozilla.org/show_bug.cgi?id=478901}

204

https://bugzilla.mozilla.org/show_bug.cgi?id=478901
https://bugzilla.mozilla.org/show_bug.cgi?id=478901

27 Strings

A string in C is merely an array of characters. The length of a string is determined by
a terminating null character: '\0'. So, a string with the contents, say, "abc" has four
characters: 'a', 'b', 'c', and the terminating null character.

The terminating null character has the value zero.

27.1 Syntax

In C, string constants (literals) are surrounded by double quotes ("), e.g. "Hello world!" and
are compiled to an array of the specified char values with an additional null terminating
character (0-valued) code to mark the end of the string. The type of a string constant is
char *.

String literals may not directly in the source code contain embedded newlines or other
control characters, or some other characters of special meaning in string.

To include such characters in a string, the backslash escapes may be used, like this:

Escape Meaning
\\ Literal backslash
\" Double quote
\' Single quote
\n Newline (line feed)
\r Carriage return
\b Backspace
\t Horizontal tab
\f Form feed
\a Alert (bell)
\v Vertical tab
\? Question mark (used to escape trigraphs1)
\nnn Character with octal value nnn
\xhh Character with hexadecimal value hh

27.1.1 Wide character strings

C supports wide character strings, defined as arrays of the type wchar_t, 16-bit (at least)
values. They are written with an L before the string like this

1 http://en.wikibooks.org/wiki/..%2FC%20trigraph%2F

205

http://en.wikibooks.org/wiki/..%2FC%20trigraph%2F

Strings

wchar_t *p = L"Hello world!";

This feature allows strings where more than 256 different possible characters are needed
(although also variable length char strings can be used). They end with a zero-valued
wchar_t. These strings are not supported by the <string.h> functions. Instead they have
their own functions, declared in <wchar.h>.

27.1.2 Character encodings

What character encoding the char and wchar_t represent is not specified by the C standard,
except that the value 0x00 and 0x0000 specify the end of the string and not a character.
It the input and output code which are directly affected by the character encoding. Other
code should not be too affected. The editor should also be able to handle the encoding if
strings shall be able to written in the source code.

There are three major types of encodings:

• One byte per character. Normally based on ASCII. There is a limit of 255 different
characters plus the zero termination character.

• Variable length char strings, which allows many more than 255 different characters.
Such strings are written as normal char-based arrays. These encodings are normally
ASCII-based and examples are UTF-82 or Shift JIS3.

• Wide character strings. They are arrays of wchar_t values. UTF-164 is the most com-
mon such encoding, and it is also variable-length, meaning that a character can be two
wchar_t.

27.2 The <string.h> Standard Header

Because programmers find raw strings cumbersome to deal with, they wrote the code in the
<string.h> library. It represents not a concerted design effort but rather the accretion of
contributions made by various authors over a span of years.

First, three types of functions exist in the string library:

• the mem functions manipulate sequences of arbitrary characters without regard to the
null character;

• the str functions manipulate null-terminated sequences of characters;
• the strn functions manipulate sequences of non-null characters.

27.2.1 The more commonly-used string functions

The nine most commonly used functions in the string library are:

• strcat - concatenate two strings

2 http://en.wikibooks.org/wiki/UTF-8

3 http://en.wikibooks.org/wiki/Shift%20JIS

4 http://en.wikibooks.org/wiki/UTF-16

206

http://en.wikibooks.org/wiki/UTF-8
http://en.wikibooks.org/wiki/Shift%20JIS
http://en.wikibooks.org/wiki/UTF-16

The <string.h> Standard Header

• strchr - string scanning operation
• strcmp - compare two strings
• strcpy - copy a string
• strlen - get string length
• strncat - concatenate one string with part of another
• strncmp - compare parts of two strings
• strncpy - copy part of a string
• strrchr - string scanning operation

The strcat function

char *strcat(char * restrict s1, const char * restrict s2);

Some people recommend using strncat() or strlcat() instead of strcat, in order to avoid
buffer overflow.

The strcat() function shall append a copy of the string pointed to by s2 (including the
terminating null byte) to the end of the string pointed to by s1. The initial byte of s2

overwrites the null byte at the end of s1. If copying takes place between objects that
overlap, the behavior is undefined. The function returns s1.

This function is used to attach one string to the end of another string. It is imperative that
the first string (s1) have the space needed to store both strings.

Example:

#include <stdio.h>

#include <string.h>

...

static const char *colors[] =

{"Red","Orange","Yellow","Green","Blue","Purple" };

static const char *widths[] = {"Thin","Medium","Thick","Bold" };

...

char penText[20];

...

int penColor = 3, penThickness = 2;

strcpy(penText, colors[penColor]);

strcat(penText, widths[penThickness]);

printf("My pen is %s\n", penText); // prints 'My pen is GreenThick'

Before calling strcat(), the destination must currently contain a null terminated string or
the first character must have been initialized with the null character (e.g. penText[0] =

'\0';).

The following is a public-domain implementation of strcat:

#include <string.h>

/* strcat */

char *(strcat)(char *restrict s1, const char *restrict s2)

{

char *s = s1;

/* Move s so that it points to the end of s1. */

while (*s != '\0')

s++;

/* Copy the contents of s2 into the space at the end of s1. */

strcpy(s, s2);

207

Strings

return s1;

}

The strchr function

char *strchr(const char *s, int c);

The strchr() function shall locate the first occurrence of c (converted to a char) in the
string pointed to by s. The terminating null byte is considered to be part of the string.
The function returns the location of the found character, or a null pointer if the character
was not found.

This function is used to find certain characters in strings.

At one point in history, this function was named index. The strchr name, however cryptic,
fits the general pattern for naming.

The following is a public-domain implementation of strchr:

#include <string.h>

/* strchr */

char *(strchr)(const char *s, int c)

{

/* Scan s for the character. When this loop is finished,

s will either point to the end of the string or the

character we were looking for. */

while (*s != '\0' && *s != (char)c)

s++;

return ((*s == c) ? (char *) s : NULL);

}

The strcmp function

int strcmp(const char *s1, const char *s2);

A rudimentary form of string comparison is done with the strcmp() function. It takes two
strings as arguments and returns a value less than zero if the first is lexographically less
than the second, a value greater than zero if the first is lexographically greater than the
second, or zero if the two strings are equal. The comparison is done by comparing the coded
(ascii) value of the chararacters, character by character.

This simple type of string comparison is nowadays generally considered unacceptable when
sorting lists of strings. More advanced algorithms exist that are capable of producing lists in
dictionary sorted order. They can also fix problems such as strcmp() considering the string
"Alpha2" greater than "Alpha12". (In the previous example, "Alpha2" compares greater
than "Alpha12" because '2' comes after '1' in the character set.) What we're saying is,
don't use this strcmp() alone for general string sorting in any commercial or professional
code.

The strcmp() function shall compare the string pointed to by s1 to the string pointed to
by s2. The sign of a non-zero return value shall be determined by the sign of the difference
between the values of the first pair of bytes (both interpreted as type unsigned char) that
differ in the strings being compared. Upon completion, strcmp() shall return an integer

208

The <string.h> Standard Header

greater than, equal to, or less than 0, if the string pointed to by s1 is greater than, equal
to, or less than the string pointed to by s2, respectively.

Since comparing pointers by themselves is not practically useful unless one is comparing
pointers within the same array, this function lexically compares the strings that two pointers
point to.

This function is useful in comparisons, e.g.

if (strcmp(s, "whatever") == 0) /* do something */

;

The collating sequence used by strcmp() is equivalent to the machine's native character
set. The only guarantee about the order is that the digits from '0' to '9' are in consecutive
order.

The following is a public-domain implementation of strcmp:

#include <string.h>

/* strcmp */

int (strcmp)(const char *s1, const char *s2)

{

unsigned char uc1, uc2;

/* Move s1 and s2 to the first differing characters

in each string, or the ends of the strings if they

are identical. */

while (*s1 != '\0' && *s1 == *s2) {

s1++;

s2++;

}

/* Compare the characters as unsigned char and

return the difference. */

uc1 = (*(unsigned char *) s1);

uc2 = (*(unsigned char *) s2);

return ((uc1 < uc2) ? -1 : (uc1 > uc2));

}

The strcpy function

char *strcpy(char *restrict s1, const char *restrict s2);

Some people recommend always using strncpy() instead of strcpy, to avoid buffer overflow.

The strcpy() function shall copy the C string pointed to by s2 (including the terminating
null byte) into the array pointed to by s1. If copying takes place between objects that
overlap, the behavior is undefined. The function returns s1. There is no value used to
indicate an error: if the arguments to strcpy() are correct, and the destination buffer is
large enough, the function will never fail.

Example:

#include <stdio.h>

#include <string.h>

/* ... */

static const char *penType="round";

/* ... */

209

Strings

char penText[20];

/* ... */

strcpy(penText, penType);

Important: You must ensure that the destination buffer (s1) is able to contain all the
characters in the source array, including the terminating null byte. Otherwise, strcpy()

will overwrite memory past the end of the buffer, causing a buffer overflow, which can cause
the program to crash, or can be exploited by hackers to compromise the security of the
computer.

The following is a public-domain implementation of strcpy:

#include <string.h>

/* strcpy */

char *(strcpy)(char *restrict s1, const char *restrict s2)

{

char *dst = s1;

const char *src = s2;

/* Do the copying in a loop. */

while ((*dst++ = *src++) != '\0')

; /* The body of this loop is left empty. */

/* Return the destination string. */

return s1;

}

The strlen function

size_t strlen(const char *s);

The strlen() function shall compute the number of bytes in the string to which s points,
not including the terminating null byte. It returns the number of bytes in the string. No
value is used to indicate an error.

The following is a public-domain implementation of strlen:

#include <string.h>

/* strlen */

size_t (strlen)(const char *s)

{

const char *p = s;

/* Loop over the data in s. */

while (*p != '\0')

p++;

return (size_t)(p - s);

}

The strncat function

char *strncat(char *restrict s1, const char *restrict s2, size_t n);

The strncat() function shall append not more than n bytes (a null byte and bytes that
follow it are not appended) from the array pointed to by s2 to the end of the string pointed
to by s1. The initial byte of s2 overwrites the null byte at the end of s1. A terminating null
byte is always appended to the result. If copying takes place between objects that overlap,
the behavior is undefined. The function returns s1.

210

The <string.h> Standard Header

The following is a public-domain implementation of strncat:

#include <string.h>

/* strncat */

char *(strncat)(char *restrict s1, const char *restrict s2, size_t n)

{

char *s = s1;

/* Loop over the data in s1. */

while (*s != '\0')

s++;

/* s now points to s1's trailing null character, now copy

up to n bytes from s1 into s stopping if a null character

is encountered in s2.

It is not safe to use strncpy here since it copies EXACTLY n

characters, NULL padding if necessary. */

while (n != 0 && (*s = *s2++) != '\0') {

n--;

s++;

}

if (*s != '\0')

*s = '\0';

return s1;

}

The strncmp function

int strncmp(const char *s1, const char *s2, size_t n);

The strncmp() function shall compare not more than n bytes (bytes that follow a null byte
are not compared) from the array pointed to by s1 to the array pointed to by s2. The sign
of a non-zero return value is determined by the sign of the difference between the values of
the first pair of bytes (both interpreted as type unsigned char) that differ in the strings
being compared. See strcmp for an explanation of the return value.

This function is useful in comparisons, as the strcmp function is.

The following is a public-domain implementation of strncmp:

#include <string.h>

/* strncmp */

int (strncmp)(const char *s1, const char *s2, size_t n)

{

unsigned char uc1, uc2;

/* Nothing to compare? Return zero. */

if (n == 0)

return 0;

/* Loop, comparing bytes. */

while (n-- > 0 && *s1 == *s2) {

/* If we've run out of bytes or hit a null, return zero

since we already know *s1 == *s2. */

if (n == 0 || *s1 == '\0')

return 0;

s1++;

s2++;

}

uc1 = (*(unsigned char *) s1);

uc2 = (*(unsigned char *) s2);

return ((uc1 < uc2) ? -1 : (uc1 > uc2));

}

211

Strings

The strncpy function

char *strncpy(char *restrict s1, const char *restrict s2, size_t n);

The strncpy() function shall copy not more than n bytes (bytes that follow a null byte
are not copied) from the array pointed to by s2 to the array pointed to by s1. If copying
takes place between objects that overlap, the behavior is undefined. If the array pointed to
by s2 is a string that is shorter than n bytes, null bytes shall be appended to the copy in
the array pointed to by s1, until n bytes in all are written. The function shall return s1; no
return value is reserved to indicate an error.

It is possible that the function will not return a null-terminated string, which happens if
the s2 string is longer than n bytes.

The following is a public-domain version of strncpy:

#include <string.h>

/* strncpy */

char *(strncpy)(char *restrict s1, const char *restrict s2, size_t n)

{

char *dst = s1;

const char *src = s2;

/* Copy bytes, one at a time. */

while (n > 0) {

n--;

if ((*dst++ = *src++) == '\0') {

/* If we get here, we found a null character at the end

of s2, so use memset to put null bytes at the end of

s1. */

memset(dst, '\0', n);

break;

}

}

return s1;

}

The strrchr function

char *strrchr(const char *s, int c);

strrchr is similar to strchr, except the string is searched right to left.

The strrchr() function shall locate the last occurrence of c (converted to a char) in the
string pointed to by s. The terminating null byte is considered to be part of the string. Its
return value is similar to strchr's return value.

At one point in history, this function was named rindex. The strrchr name, however
cryptic, fits the general pattern for naming.

The following is a public-domain implementation of strrchr:

#include <string.h>

/* strrchr */

char *(strrchr)(const char *s, int c)

{

const char *last = NULL;

/* If the character we're looking for is the terminating null,

we just need to look for that character as there's only one

212

The <string.h> Standard Header

of them in the string. */

if (c == '\0')

return strchr(s, c);

/* Loop through, finding the last match before hitting NULL. */

while ((s = strchr(s, c)) != NULL) {

last = s;

s++;

}

return (char *) last;

}

27.2.2 The less commonly-used string functions

The less-used functions are:

• memchr - Find a byte in memory
• memcmp - Compare bytes in memory
• memcpy - Copy bytes in memory
• memmove - Copy bytes in memory with overlapping areas
• memset - Set bytes in memory
• strcoll - Compare bytes according to a locale-specific collating sequence
• strcspn - Get the length of a complementary substring
• strerror - Get error message
• strpbrk - Scan a string for a byte
• strspn - Get the length of a substring
• strstr - Find a substring
• strtok - Split a string into tokens
• strxfrm - Transform string

Copying functions

The memcpy function
void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

The memcpy() function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1. If copying takes place between objects that overlap, the behavior is
undefined. The function returns s1.

Because the function does not have to worry about overlap, it can do the simplest copy it
can.

The following is a public-domain implementation of memcpy:

#include <string.h>

/* memcpy */

void *(memcpy)(void * restrict s1, const void * restrict s2, size_t n)

{

char *dst = s1;

const char *src = s2;

/* Loop and copy. */

while (n-- != 0)

*dst++ = *src++;

return s1;

}

213

Strings

The memmove function
void *memmove(void *s1, const void *s2, size_t n);

The memmove() function shall copy n bytes from the object pointed to by s2 into the object
pointed to by s1. Copying takes place as if the n bytes from the object pointed to by s2

are first copied into a temporary array of n bytes that does not overlap the objects pointed
to by s1 and s2, and then the n bytes from the temporary array are copied into the object
pointed to by s1. The function returns the value of s1.

The easy way to implement this without using a temporary array is to check for a condition
that would prevent an ascending copy, and if found, do a descending copy.

The following is a public-domain, though not completely portable, implementation of
memmove:

#include <string.h>

/* memmove */

void *(memmove)(void *s1, const void *s2, size_t n)

{

/* note: these don't have to point to unsigned chars */

char *p1 = s1;

const char *p2 = s2;

/* test for overlap that prevents an ascending copy */

if (p2 < p1 && p1 < p2 + n) {

/* do a descending copy */

p2 += n;

p1 += n;

while (n-- != 0)

*--p1 = *--p2;

} else

while (n-- != 0)

*p1++ = *p2++;

return s1;

}

Comparison functions

The memcmp function
int memcmp(const void *s1, const void *s2, size_t n);

The memcmp() function shall compare the first n bytes (each interpreted as unsigned char)
of the object pointed to by s1 to the first n bytes of the object pointed to by s2. The sign
of a non-zero return value shall be determined by the sign of the difference between the
values of the first pair of bytes (both interpreted as type unsigned char) that differ in the
objects being compared.

The following is a public-domain implementation of memcmp:

#include <string.h>

/* memcmp */

int (memcmp)(const void *s1, const void *s2, size_t n)

{

const unsigned char *us1 = (const unsigned char *) s1;

const unsigned char *us2 = (const unsigned char *) s2;

while (n-- != 0) {

if (*us1 != *us2)

return (*us1 < *us2) ? -1 : +1;

us1++;

214

The <string.h> Standard Header

us2++;

}

return 0;

}

The strcoll and strxfrm functions
int strcoll(const char *s1, const char *s2);

size_t strxfrm(char *s1, const char *s2, size_t n);

The ANSI C Standard specifies two locale-specific comparison functions.

The strcoll function compares the string pointed to by s1 to the string pointed to by
s2, both interpreted as appropriate to the LC_COLLATE category of the current locale. The
return value is similar to strcmp.

The strxfrm function transforms the string pointed to by s2 and places the resulting string
into the array pointed to by s1. The transformation is such that if the strcmp function is
applied to the two transformed strings, it returns a value greater than, equal to, or less than
zero, corresponding to the result of the strcoll function applied to the same two original
strings. No more than n characters are placed into the resulting array pointed to by s1,
including the terminating null character. If n is zero, s1 is permitted to be a null pointer. If
copying takes place between objects that overlap, the behavior is undefined. The function
returns the length of the transformed string.

These functions are rarely used and nontrivial to code, so there is no code for this section.

Search functions

The memchr function
void *memchr(const void *s, int c, size_t n);

The memchr() function shall locate the first occurrence of c (converted to an unsigned

char) in the initial n bytes (each interpreted as unsigned char) of the object pointed to
by s. If c is not found, memchr returns a null pointer.

The following is a public-domain implementation of memchr:

#include <string.h>

/* memchr */

void *(memchr)(const void *s, int c, size_t n)

{

const unsigned char *src = s;

unsigned char uc = c;

while (n-- != 0) {

if (*src == uc)

return (void *) src;

src++;

}

return NULL;

}

215

Strings

The strcspn, strpbrk, and strspn functions
size_t strcspn(const char *s1, const char *s2);

char *strpbrk(const char *s1, const char *s2);

size_t strspn(const char *s1, const char *s2);

The strcspn function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters not from the string pointed to by s2.

The strpbrk function locates the first occurrence in the string pointed to by s1 of any
character from the string pointed to by s2, returning a pointer to that character or a null
pointer if not found.

The strspn function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters from the string pointed to by s2.

All of these functions are similar except in the test and the return value.

The following are public-domain implementations of strcspn, strpbrk, and strspn:

#include <string.h>

/* strcspn */

size_t (strcspn)(const char *s1, const char *s2)

{

const char *sc1;

for (sc1 = s1; *sc1 != '\0'; sc1++)

if (strchr(s2, *sc1) != NULL)

return (sc1 - s1);

return sc1 - s1; /* terminating nulls match */

}

#include <string.h>

/* strpbrk */

char *(strpbrk)(const char *s1, const char *s2)

{

const char *sc1;

for (sc1 = s1; *sc1 != '\0'; sc1++)

if (strchr(s2, *sc1) != NULL)

return (char *)sc1;

return NULL; /* terminating nulls match */

}

#include <string.h>

/* strspn */

size_t (strspn)(const char *s1, const char *s2)

{

const char *sc1;

for (sc1 = s1; *sc1 != '\0'; sc1++)

if (strchr(s2, *sc1) == NULL)

return (sc1 - s1);

return sc1 - s1; /* terminating nulls don't match */

}

The strstr function
char *strstr(const char *haystack, const char *needle);

The strstr() function shall locate the first occurrence in the string pointed to by haystack

of the sequence of bytes (excluding the terminating null byte) in the string pointed to by

216

The <string.h> Standard Header

needle. The function returns the pointer to the matching string in haystack or a null
pointer if a match is not found. If needle is an empty string, the function returns haystack.

The following is a public-domain implementation of strstr:

#include <string.h>

/* strstr */

char *(strstr)(const char *haystack, const char *needle)

{

size_t needlelen;

/* Check for the null needle case. */

if (*needle == '\0')

return (char *) haystack;

needlelen = strlen(needle);

for (; (haystack = strchr(haystack, *needle)) != NULL; haystack++)

if (strncmp(haystack, needle, needlelen) == 0)

return (char *) haystack;

return NULL;

}

The strtok function
char *strtok(char *restrict s1, const char *restrict delimiters);

A sequence of calls to strtok() breaks the string pointed to by s1 into a sequence of tokens,
each of which is delimited by a byte from the string pointed to by delimiters. The first
call in the sequence has s1 as its first argument, and is followed by calls with a null pointer
as their first argument. The separator string pointed to by delimiters may be different
from call to call.

The first call in the sequence searches the string pointed to by s1 for the first byte that is
not contained in the current separator string pointed to by delimiters. If no such byte is
found, then there are no tokens in the string pointed to by s1 and strtok() shall return a
null pointer. If such a byte is found, it is the start of the first token.

The strtok() function then searches from there for a byte (or multiple, consecutive bytes)
that is contained in the current separator string. If no such byte is found, the current token
extends to the end of the string pointed to by s1, and subsequent searches for a token
shall return a null pointer. If such a byte is found, it is overwritten by a null byte, which
terminates the current token. The strtok() function saves a pointer to the following byte,
from which the next search for a token shall start.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described above.

The strtok() function need not be reentrant. A function that is not required to be reentrant
is not required to be thread-safe.

Because the strtok() function must save state between calls, and you could not have two
tokenizers going at the same time, the Single Unix Standard defined a similar function,
strtok_r(), that does not need to save state. Its prototype is this:

char *strtok_r(char *s, const char *delimiters, char **lasts);

The strtok_r() function considers the null-terminated string s as a sequence of zero or
more text tokens separated by spans of one or more characters from the separator string

217

Strings

delimiters. The argument lasts points to a user-provided pointer which points to stored
information necessary for strtok_r() to continue scanning the same string.

In the first call to strtok_r(), s points to a null-terminated string, delimiters to a null-
terminated string of separator characters, and the value pointed to by lasts is ignored. The
strtok_r() function shall return a pointer to the first character of the first token, write a
null character into s immediately following the returned token, and update the pointer to
which lasts points.

In subsequent calls, s is a null pointer and lasts shall be unchanged from the previous
call so that subsequent calls shall move through the string s, returning successive tokens
until no tokens remain. The separator string delimiters may be different from call to call.
When no token remains in s, a NULL pointer shall be returned.

The following public-domain code for strtok and strtok_r codes the former as a special
case of the latter:

#include <string.h>

/* strtok_r */

char *(strtok_r)(char *s, const char *delimiters, char **lasts)

{

char *sbegin, *send;

sbegin = s ? s : *lasts;

sbegin += strspn(sbegin, delimiters);

if (*sbegin == '\0') {

*lasts = "";

return NULL;

}

send = sbegin + strcspn(sbegin, delimiters);

if (*send != '\0')

*send++ = '\0';

*lasts = send;

return sbegin;

}

/* strtok */

char *(strtok)(char *restrict s1, const char *restrict delimiters)

{

static char *ssave = "";

return strtok_r(s1, delimiters, &ssave);

}

Miscellaneous functions

These functions do not fit into one of the above categories.

The memset function
void *memset(void *s, int c, size_t n);

The memset() function converts c into unsigned char, then stores the character into the
first n bytes of memory pointed to by s.

The following is a public-domain implementation of memset:

#include <string.h>

/* memset */

void *(memset)(void *s, int c, size_t n)

{

218

Examples

unsigned char *us = s;

unsigned char uc = c;

while (n-- != 0)

*us++ = uc;

return s;

}

The strerror function
char *strerror(int errorcode);

This function returns a locale-specific error message corresponding to the parameter. De-
pending on the circumstances, this function could be trivial to implement, but this author
will not do that as it varies.

The Single Unix System Version 3 has a variant, strerror_r, with this prototype:

int strerror_r(int errcode, char *buf, size_t buflen);

This function stores the message in buf, which has a length of size buflen.

27.3 Examples

To determine the number of characters in a string, the strlen() function is used:

#include <stdio.h>

#include <string.h>

...

int length, length2;

char *turkey;

static char *flower= "begonia";

static char *gemstone="ruby ";

length = strlen(flower);

printf("Length = %d\n", length); // prints 'Length = 7'

length2 = strlen(gemstone);

turkey = malloc(length + length2 + 1);

if (turkey) {

strcpy(turkey, gemstone);

strcat(turkey, flower);

printf("%s\n", turkey); // prints 'ruby begonia'

free(turkey);

}

Note that the amount of memory allocated for 'turkey' is one plus the sum of the lengths
of the strings to be concatenated. This is for the terminating null character, which is not
counted in the lengths of the strings.

27.3.1 Exercises

1. The string functions use a lot of looping constructs. Is there some way to portably
unravel the loops?

2. What functions are possibly missing from the library as it stands now?

219

Strings

27.4 Further reading

• A Little C Primer/C String Function Library5

• C++ Programming/Code/IO/Streams/string6

• Because so many functions in the standard string.h library are vulnerable to buffer
overflow errors, some people7 recommend avoiding the string.h library and "C style
strings" and instead using a dynamic string API, such as the ones listed in the String
library comparison8.

• There's a tiny public domain concat() function, which will allocate memory and safely
concatenate any number of strings in portable C/C++ code9

pl:C/Napisy10 pt:Programar em C/Strings11

5
http://en.wikibooks.org/wiki/A%20Little%20C%20Primer%2FC%20String%20Function%

20Library
6 http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FStreams%2Fstring

7 http://www.and.org/vstr/security

8 http://www.and.org/vstr/comparison

9 http://openwall.info/wiki/people/solar/software/public-domain-source-code/concat

10 http://pl.wikibooks.org/wiki/C%2FNapisy

11 http://pt.wikibooks.org/wiki/Programar%20em%20C%2FStrings

220

http://en.wikibooks.org/wiki/A%20Little%20C%20Primer%2FC%20String%20Function%20Library
http://en.wikibooks.org/wiki/A%20Little%20C%20Primer%2FC%20String%20Function%20Library
http://en.wikibooks.org/wiki/C%2B%2B%20Programming%2FCode%2FIO%2FStreams%2Fstring
http://www.and.org/vstr/security
http://www.and.org/vstr/comparison
http://openwall.info/wiki/people/solar/software/public-domain-source-code/concat
http://pl.wikibooks.org/wiki/C%2FNapisy
http://pt.wikibooks.org/wiki/Programar%20em%20C%2FStrings

28 Complex types

In the section C types1 we looked at some basic types. However C complex types allow
us greater flexibility in managing data in our C program.

28.1 Data structures

A data structure ("struct") contains multiple pieces of data. Each piece of data (called a
"member") can be accessed by the name of the variable, followed by a '.', then the name of
the member. (Another way to access a member is using the member operator '->'). The
member variables of a struct can be of any data type and can even be an array or a pointer.

28.1.1 Pointers

Pointers are variables that don't hold the actual data. Instead they point to the memory
location of some other variable. For example,

int *pointer = &variable;

defines a pointer to an int, and also makes it point to the particular integer contained in
variable.

The '*' is what makes this an integer pointer. To make the pointer point to a different
integer, use the form

pointer = &sandwiches;

Where & is the address of operator. Often programmers set the value of the pointer to
NULL (a standard macro defined as 0 or (void*)0) like this:

pointer = NULL;

This tells us that the pointer isn't currently pointing to any real location.

Additionally, to dereference (access the thing being pointed at) the pointer, use the form:

1 http://en.wikibooks.org/wiki/C%20Programming%2FTypes

221

http://en.wikibooks.org/wiki/C%20Programming%2FTypes

Complex types

value = *pointer;

28.1.2 Structs

A data structure contains multiple pieces of data. One defines a data structure using the
struct keyword. For example,

struct mystruct

{

int int_member;

double double_member;

char string_member[25];

} variable;

variable is an instance of mystruct. You can omit it from the end of the struct

declaration and declare it later using:

struct mystruct variable;

It is often common practice to make a type synonym so we don't have to type "struct
mystruct" all the time. C allows us the possibility to do so using a typedef statement,
which aliases a type:

typedef struct

{

...

} Mystruct;

The struct itself has no name (by the absence of a name on the first line), but it is aliased
as Mystruct. Then you can use

Mystruct structure;

Note that it is commonplace, and good style to capitalize the first letter of a type
synonym. However in the actual definition we need to give the struct a tag so we can refer
to it: we may have a recursive data structure of some kind. For trees or chained lists, we
need a pointer to the same data type in the struct. During compilation, the type synonym
is not known to the compiler and there will be an error. To avoid this, it is necessary to let
the compiler know the name right from the start (Note that the struct keyword is used
only inside the structure! After the declaration, the compiler knows that the type synonym
refers to a struct):

typedef struct Mystruct

{

...

222

Type modifiers

struct Mystruct * pMystruct

} Mystruct;

28.1.3 Unions

The definition of a union is similar to that of a struct. The difference between the two
is that in a struct, the members occupy different areas of memory, but in a union, the
members occupy the same area of memory. Thus, in the following type, for example:

union {

int i;

double d;

} u;

The programmer can access either u.i or u.d, but not both at the same time. Since u.i

and u.d occupy the same area of memory, modifying one modifies the value of the other,
sometimes in unpredictable ways.

The size of a union is the size of its largest member.

28.2 Type modifiers

For "register", "volatile", "auto" and "extern", see ../Variables#Other_Modifiers2.

de:C-Programmierung: Komplexe Datentypen3 pl:C/Typy złożone4

2 Chapter 12.9 on page 54
3 http://de.wikibooks.org/wiki/C-Programmierung%3A%20Komplexe%20Datentypen

4 http://pl.wikibooks.org/wiki/C%2FTypy%20z%C5%82o%C5%BCone

223

http://de.wikibooks.org/wiki/C-Programmierung%3A%20Komplexe%20Datentypen
http://pl.wikibooks.org/wiki/C%2FTypy%20z%C5%82o%C5%BCone

29 Networking in UNIX

Network programming under UNIX is relatively simple in C.

This guide assumes you already have a good general idea about C, UNIX and networks.

29.1 A simple client

To start with, we'll look at one of the simplest things you can do: initialize a stream
connection and receive a message from a remote server.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <arpa/inet.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <sys/socket.h>

#define MAXRCVLEN 500

#define PORTNUM 2343

int main(int argc, char *argv[])

{

char buffer[MAXRCVLEN + 1]; /* +1 so we can add null terminator */

int len, mysocket;

struct sockaddr_in dest;

mysocket = socket(AF_INET, SOCK_STREAM, 0);

memset(&dest, 0, sizeof(dest)); /* zero the struct */

dest.sin_family = AF_INET;

dest.sin_addr.s_addr = inet_addr("127.0.0.1"); /* set destination IP number

*/

dest.sin_port = htons(PORTNUM); /* set destination port number

*/

connect(mysocket, (struct sockaddr *)&dest, sizeof(struct sockaddr));

len = recv(mysocket, buffer, MAXRCVLEN, 0);

/* We have to null terminate the received data ourselves */

buffer[len] = '\0';

printf("Received %s (%d bytes).\n", buffer, len);

close(mysocket);

return EXIT_SUCCESS;

}

This is the very bare bones of a client; in practice, we would check every function that we
call for failure, however, error checking has been left out for clarity.

225

Networking in UNIX

As you can see, the code mainly revolves around dest which is a struct of type sockaddr_in.
This struct stores information about the machine we want to connect to.

mysocket = socket(AF_INET, SOCK_STREAM, 0);

The socket() function tells our OS that we want a file descriptor for a socket which we
can use for a network stream connection; what the parameters mean is mostly irrelevant
for now.

memset(&dest, 0, sizeof(dest)); /* zero the struct */

dest.sin_family = AF_INET;

dest.sin_addr.s_addr = inet_addr("127.0.0.1"); /* set destination IP number */

dest.sin_port = htons(PORTNUM); /* set destination port number */

Now we get on to the interesting part:

The first line uses memset() to zero the struct.

The second line sets the address family. This should be the same value that was passed as
the first parameter to socket(); for most purposes AF_INET will serve.

The third line is where we set the IP of the machine we need to connect to. The variable
dest.sin_addr.s_addr is just an integer stored in Big Endian format, but we don't have to
know that as the inet_addr() function will do the conversion from string into Big Endian
integer for us.

The fourth line sets the destination port number. The htons() function converts the port
number into a Big Endian short integer. If your program is going to be run solely on
machines which use Big Endian numbers as default then dest.sin_port = 21 would work
just as well. However, for portability reasons htons() should always be used.

Now that all of the preliminary work is done, we can actually make the connection and use
it:

connect(mysocket, (struct sockaddr *)&dest, sizeof(struct sockaddr));

This tells our OS to use the socket mysocket to create a connection to the machine specified
in dest.

len = recv(mysocket, buffer, MAXRCVLEN, 0);

Now this receives up to MAXRCVLEN bytes of data from the connection and stores them in
the buffer string. The number of characters received is returned by recv(). It is important
to note that the data received will not automatically be null terminated when stored in the
buffer, so we need to do it ourselves with buffer[inputlen] = '\0'.

And that's about it!

The next step after learning how to receive data is learning how to send it. If you've
understood the previous section then this is quite easy. All you have to do is use the
send() function, which uses the same parameters as recv(). If in our previous example
buffer had the text we wanted to send and its length was stored in len we would write
send(mysocket, buffer, len, 0). send() returns the number of bytes that were sent.
It is important to remember that send(), for various reasons, may not be able to send all

226

A simple server

of the bytes, so it is important to check that its return value is equal to the number of bytes
you tried to send. In most cases this can be resolved by resending the unsent data.

29.2 A simple server

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <arpa/inet.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <sys/socket.h>

#define PORTNUM 2343

int main(int argc, char *argv[])

{

char msg[] = "Hello World !\n";

struct sockaddr_in dest; /* socket info about the machine connecting to us

*/

struct sockaddr_in serv; /* socket info about our server */

int mysocket; /* socket used to listen for incoming connections

*/

socklen_t socksize = sizeof(struct sockaddr_in);

memset(&serv, 0, sizeof(serv)); /* zero the struct before filling

the fields */

serv.sin_family = AF_INET; /* set the type of connection to

TCP/IP */

serv.sin_addr.s_addr = htonl(INADDR_ANY); /* set our address to any

interface */

serv.sin_port = htons(PORTNUM); /* set the server port number */

mysocket = socket(AF_INET, SOCK_STREAM, 0);

/* bind serv information to mysocket */

bind(mysocket, (struct sockaddr *)&serv, sizeof(struct sockaddr));

/* start listening, allowing a queue of up to 1 pending connection */

listen(mysocket, 1);

int consocket = accept(mysocket, (struct sockaddr *)&dest, &socksize);

while(consocket)

{

printf("Incoming connection from %s - sending welcome\n",

inet_ntoa(dest.sin_addr));

send(consocket, msg, strlen(msg), 0);

consocket = accept(mysocket, (struct sockaddr *)&dest, &socksize);

}

close(consocket);

close(mysocket);

return EXIT_SUCCESS;

}

Superficially, this is very similar to the client. The first important difference is that rather
than creating a sockaddr_in with information about the machine we're connecting to, we
create it with information about the server, and then we bind() it to the socket. This

227

Networking in UNIX

allows the machine to know the data received on the port specified in the sockaddr_in

should be handled by our specified socket.

The listen() function then tells our program to start listening using the given socket. The
second parameter of listen() allows us to specify the maximum number of connections
that can be queued. Each time a connection is made to the server it is added to the queue.
We take connections from the queue using the accept() function. If there is no connection
waiting on the queue the program waits until a connection is received. The accept()

function returns another socket. This socket is essentially a "session" socket, and can be
used solely for communicating with connection we took off the queue. The original socket
(mysocket) continues to listen on the specified port for further connections.

Once we have "session" socket we can handle it in the same way as with the client, using
send() and recv() to handle data transfers.

Note that this server can only accept one connection at a time; if you want to simultaneously
handle multiple clients then you'll need to fork() off separate processes, or use threads, to
handle the connections.

29.3 Useful network functions

int gethostname(char *hostname, size_t size);

The parameters are a pointer to an array of chars and the size of that array. If possible, it
finds the hostname and stores it in the array. On failure it returns -1.

struct hostent *gethostbyname(const char *name);

This function obtains information about a domain name and stores it in a hostent struct.
The most useful part of a hostent structure is the (char**) h_addr_list field, which is
a null terminated array of the IP addresses associated with that domain. The field h_addr

is a pointer to the first IP address in the h_addr_list array. Returns NULL on failure.

29.4 FAQs

29.4.1 What about stateless connections?

If you don't want to exploit the properties of TCP in your program and would rather just
use a UDP connection, then you can just replace SOCK_STREAM with SOCK_DGRAM in your
call to socket() and use the result in the same way. It is important to remember that
UDP does not guarantee delivery of packets and order of delivery, so checking is important.

If you want to exploit the properties of UDP, then you can use sendto() and recvfrom(),
which operate like send() and recv() except you need to provide extra parameters speci-
fying who you are communicating with.

228

FAQs

29.4.2 How do I check for errors?

The functions socket(), recv() and connect() all return -1 on failure and use errno for
further details.

229

30 Common practices

With its extensive use, a number of common practices and conventions have evolved to help
avoid errors in C programs. These are simultaneously a demonstration of the application
of good software engineering principles to a language and an indication of the limitations
of C. Although few are used universally, and some are controversial, each of these enjoys
wide use.

30.1 Dynamic multidimensional arrays

Although one-dimensional arrays are easy to create dynamically using malloc, and fixed-
size multidimensional arrays are easy to create using the built-in language feature, dynamic
multidimensional arrays are trickier. There are a number of different ways to create them,
each with different tradeoffs. The two most popular ways to create them are:

• They can be allocated as a single block of memory, just like static multidimensional
arrays. This requires that the array be rectangular (i.e. subarrays of lower dimensions
are static and have the same size). The disadvantage is that the syntax of declaration
the pointer is a little tricky for programmers at first. For example, if one wanted to
create an array of ints of 3 columns and rows rows, one would do

int (*multi_array)[3] = malloc(rows * sizeof(int[3]));

(Note that here multi_array is a pointer to an array of 3 ints.)

Because of array-pointer interchangeability, you can index this just like static multidimen-
sional arrays, i.e. multi_array[5][2] is the element at the 6th row and 3rd column.

• They can be allocated by first allocating an array of pointers, and then allocating subar-
rays and storing their addresses in the array of pointers (this approach is also known as
an Iliffe vector1). The syntax for accessing elements is the same as for multidimensional
arrays described above (even though they are stored very differently). This approach
has the advantage of the ability to make ragged arrays (i.e. with subarrays of different
sizes). However, it also uses more space and requires more levels of indirection to index
into, and can have worse cache performance. It also requires many dynamic allocations,
each of which can be expensive.

For more information, see the comp.lang.c FAQ, question 6.162.

1 http://en.wikipedia.org/wiki/Iliffe%20vector

2 http://www.eskimo.com/~scs/C-faq/q6.16.html

231

http://en.wikipedia.org/wiki/Iliffe%20vector
http://www.eskimo.com/~scs/C-faq/q6.16.html

Common practices

In some cases, the use of multi-dimensional arrays can best be addressed as an array of
structures. Before user-defined data structures were available, a common technique was to
define a multi-dimensional array, where each column contained different information about
the row. This approach is also frequently used by beginner programmers. For example,
columns of a two-dimensional character array might contain last name, first name, address,
etc.

In cases like this, it is better to define a structure that contains the information that was
stored in the columns, and then create an array of pointers to that structure. This is
especially true when the number of data points for a given record might vary, such as the
tracks on an album. In these cases, it is better to create a structure for the album that
contains information about the album, along with a dynamic array for the list of songs
on the album. Then an array of pointers to the album structure can be used to store the
collection.

• Another useful way to create a dynamic multi-dimensional array is to flatten the array
and index manually. For example, a 2-dimensional array with sizes x and y has x*y
elements, therefore can be created by

int dynamic_multi_array[x*y];

The index is slightly trickier than before, but can still be obtained by y*i+j. You then
access the array with

static_multi_array[i][j];

dynamic_multi_array[y*i+j];

Some more examples with higher dimensions:

int dim1[w];

int dim2[w*x];

int dim3[w*x*y];

int dim4[w*x*y*z];

dim1[i]

dim2[w*j+i];

dim3[w*(x*i+j)+k] // index is k + w*j + w*x*i

dim4[w*(x*(y*i+j)+k)+l] // index is w*x*y*i + w*x*j + w*k + l

Note that w*(x*(y*i+j)+k)+l is equal to w*x*y*i + w*x*j + w*k + l, but uses fewer
operations (see Horner's Method3). It uses the same number of operations as accessing a
static array by dim4[i][j][k][l], so should not be any slower to use.

The advantage to using this method is that the array can be passed freely between functions
without knowing the size of the array at compile time (since C sees it as a 1-dimensional
array, although some way of passing the dimensions is still necessary), and the entire array is
contiguous in memory, so accessing consecutive elements should be fast. The disadvantage
is that it can be difficult at first to get used to how to index the elements.

3 http://en.wikipedia.org/wiki/Horner%27s_method

232

http://en.wikipedia.org/wiki/Horner%27s_method

Constructors and destructors

30.2 Constructors and destructors

In most object-oriented languages, objects cannot be created directly by a client that wishes
to use them. Instead, the client must ask the class to build an instance of the object using
a special routine called a constructor. Constructors are important because they allow an
object to enforce invariants about its internal state throughout its lifetime. Destructors,
called at the end of an object's lifetime, are important in systems where an object holds
exclusive access to some resource, and it is desirable to ensure that it releases these resources
for use by other objects.

Since C is not an object-oriented language, it has no built-in support for constructors or
destructors. It is not uncommon for clients to explicitly allocate and initialize records and
other objects. However, this leads to a potential for errors, since operations on the object
may fail or behave unpredictably if the object is not properly initialized. A better approach
is to have a function that creates an instance of the object, possibly taking initialization
parameters, as in this example:

struct string {

size_t size;

char *data;

};

struct string *create_string(const char *initial) {

assert (initial != NULL);

struct string *new_string = malloc(sizeof(*new_string));

if (new_string != NULL) {

new_string->size = strlen(initial);

new_string->data = strdup(initial);

}

return new_string;

}

Similarly, if it is left to the client to destroy objects correctly, they may fail to do so,
causing resource leaks. It is better to have an explicit destructor which is always used,
such as this one:

void free_string(struct string *s) {

assert (s != NULL);

free(s->data); /* free memory held by the structure */

free(s); /* free the structure itself */

}

It is often useful to combine destructors with #Nulling freed pointers4.

Sometimes it is useful to hide the definition of the object to ensure that the client does
not allocate it manually. To do this, the structure is defined in the source file (or a private
header file not available to users) instead of the header file, and a forward declaration is
put in the header file:

4 Chapter 30.3 on page 234

233

Common practices

struct string;

struct string *create_string(const char *initial);

void free_string(struct string *s);

30.3 Nulling freed pointers

As discussed earlier, after free() has been called on a pointer, it becomes a dangling
pointer. Worse still, most modern platforms cannot detect when such a pointer is used
before being reassigned.

One simple solution to this is to ensure that any pointer is set to a null pointer immediately
after being freed: 5

free(p);

p = NULL;

Unlike dangling pointers, a hardware exception will arise on many modern architectures
when a null pointer is dereferenced. Also, programs can include error checks for the null
value, but not for a dangling pointer value. To ensure it is done at all locations, a macro
can be used:

#define FREE(p) do { free(p); (p) = NULL; } while(0)

(To see why the macro is written this way, see #Macro conventions6.) Also, when this
technique is used, destructors should zero out the pointer that they are passed, and their
argument must be passed by reference to allow this. For example, here's the destructor
from #Constructors and destructors7 updated:

void free_string(struct string **s) {

assert(s != NULL && *s != NULL);

FREE((*s)->data); /* free memory held by the structure */

FREE(*s); /* free the structure itself */

s=NULL; / zero the argument */

}

Unfortunately, this idiom will not do anything to any other pointers that may be pointing
to the freed memory. For this reason, some C experts regard this idiom as dangerous due
to creating a false sense of security.

5 comp.lang.c FAQ list: "Why isn't a pointer null after calling free?" ˆ{http://c-faq.com/malloc/

ptrafterfree.html} mentions that "it is often useful to set [pointer variables] to NULL immediately
after freeing them".

6 Chapter 30.4 on page 235
7 Chapter 30.2 on page 233

234

http://c-faq.com/malloc/ptrafterfree.html
http://c-faq.com/malloc/ptrafterfree.html

Macro conventions

30.4 Macro conventions

Because preprocessor macros in C work using simple token replacement, they are prone to
a number of confusing errors, some of which can be avoided by following a simple set of
conventions:

1. Placing parentheses around macro arguments wherever possible. This ensures that,
if they are expressions, the order of operations does not affect the behavior of the
expression. For example:
• Wrong: #define square(x) x*x

• Better: #define square(x) (x)*(x)

2. Placing parentheses around the entire expression if it is a single expression. Again,
this avoids changes in meaning due to the order of operations.
• Wrong: #define square(x) (x)*(x)

• Better: #define square(x) ((x)*(x))

• Dangerous, remember it replaces the text in verbatim. Suppose your code is square

(x++), after the macro invocation will x be incremented by 2
3. If a macro produces multiple statements, or declares variables, it can be wrapped in a

do { ... } while(0) loop, with no terminating semicolon. This allows the macro to be
used like a single statement in any location, such as the body of an if statement, while
still allowing a semicolon to be placed after the macro invocation without creating a
null statement. Care must be taken that any new variables do not potentially mask
portions of the macro's arguments.
• Wrong: #define FREE(p) free(p); p = NULL;

• Better: #define FREE(p) do { free(p); p = NULL; } while(0)

4. Avoiding using a macro argument twice or more inside a macro, if possible; this causes
problems with macro arguments that contain side effects, such as assignments.

5. If a macro may be replaced by a function in the future, considering naming it like a
function.

30.5 Further reading

There are a huge number of C style guidelines.

• "C and C++ Style Guides"8 by Chris Lott lists many popular C style guides.
• The Motor Industry Software Reliability Association (MISRA) publishes "MISRA-C:

Guidelines for the use of the C language in critical systems". (Wikipedia: MISRA C9;
http://www.misra-c.com/).

pl:C/Powszechne praktyki10

8 http://www.chris-lott.org/resources/cstyle/

9 http://en.wikipedia.org/wiki/%20MISRA%20C

10 http://pl.wikibooks.org/wiki/C%2FPowszechne%20praktyki

235

http://www.misra-c.com/
http://www.chris-lott.org/resources/cstyle/
http://en.wikipedia.org/wiki/%20MISRA%20C
http://pl.wikibooks.org/wiki/C%2FPowszechne%20praktyki

31 C and beyond

237

32 Language extensions

Most C compilers have one or more "extensions" to the standard C language, to do things
that are inconvenient to do in standard, portable C.

Some examples of language extensions:

• in-line assembly language
• interrupt service routines
• variable-length data structure (a structure whose last item is a "zero-length array").1

2

• re-sizeable multidimensional arrays
• various "#pragma" settings to compile quickly, to generate fast code, or to generate

compact code.
• bit manipulation, especially bit-rotations and things involving the "carry" bit
• storage alignment
• Arrays whose length is computed at run time.

32.1 External links

• GNU C: Extensions to the C Language3

• C/C++ interpreter Ch extensions to the C language for scripting4

• SDCC: Storage Class Language Extensions5

1
2 comp.lang.c FAQ list: Question 2.6 ˆ{http://c-faq.com/struct/structhack.html} : "C99 intro-

duces the concept of a flexible array member, which allows the size of an array to be omitted if it is
the last member in a structure, thus providing a well-defined solution."

3 http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/C-Extensions.html#C-Extensions

4 http://www.softintegration.com/support/faq/general.html#4

5 http://sdcc.sourceforge.net/doc/sdccman.html/node56.html

239

http://c-faq.com/struct/structhack.html
http://gcc.gnu.org/onlinedocs/gcc-4.0.2/gcc/C-Extensions.html#C-Extensions
http://www.softintegration.com/support/faq/general.html#4
http://sdcc.sourceforge.net/doc/sdccman.html/node56.html

33 Mixing languages

33.1 Assembler

See Embedded Systems/Mixed C and Assembly Programming1

33.2 Cg

Make the main program (for CPU) in C, which loads and run the Cg2 program (for GPU
).345

33.2.1 Header Files

Add to C program :6

#include <Cg/cg.h> /* To include the core Cg runtime API into your program */

#include <Cg/cgGL.h> /* to include the OpenGL-specific Cg runtime API */

33.3 Java

Using the Java native interface (JNI), Java applications can call C libraries.

See also

• Java_Programming/Keywords/native7

1
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%

20Programming
2 http://en.wikibooks.org/wiki/Cg_%28programming_language%29

3 Lesson: 47 from NeHe Productions ˆ{http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=

47}

4 Cg Bumpmapping by Razvan Surdulescu at GameDev ˆ{http://www.gamedev.net/reference/

articles/article1903.asp}

5 [http://www.fusionindustries.com/default.asp?page=cg-hlsl-faq | Cg & HLSL Shading Lan-
guage FAQ

by Fusion Industries]

6 http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_b.html NVidia Cg tuto-
rial. Appendix B. The Cg Runtime

7 http://en.wikibooks.org/wiki/Java_Programming%2FKeywords%2Fnative

241

http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://en.wikibooks.org/wiki/Cg_%28programming_language%29
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=47
http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=47
http://www.gamedev.net/reference/articles/article1903.asp
http://www.gamedev.net/reference/articles/article1903.asp
http://www.fusionindustries.com/default.asp?page=cg-hlsl-faq
http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_b.html
http://en.wikibooks.org/wiki/Java_Programming%2FKeywords%2Fnative

Mixing languages

33.4 Perl

To mix Perl and C, we can use XS. XS is an interface description file format used to create
an extension interface between Perl and C code (or a C library) which one wishes to use
with Perl.

The basic procedure is very simple. We can create the necessary subdirectory structure
by running "h2xs" application (e.g. "h2xs -A -n Modulename"). This will create - among
others - a Makefile.PL, a .pm Perl module and a .xs XSUB file in the subdirectory tree.
We can edit the .xs file by adding our code to that, let's say:

void

hello()

CODE:

printf("Hello, world!\n");

and we can successfully use our new command at Perl side, after running a "perl Make-
file.PL" and "make".

Further details can be found on the perlxstut8 perldoc9 page.

33.5 Python

33.6 For further reading

• Embedded Systems/Mixed C and Assembly Programming10

33.7 References

pl:C/Łączenie z innymi językami11

8 http://perldoc.perl.org/perlxstut.html

9 http://perldoc.perl.org

10
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%

20Programming
11 http://pl.wikibooks.org/wiki/C%2F%C5%81%C4%85czenie%20z%20innymi%20j%C4%99zykami

242

http://perldoc.perl.org/perlxstut.html
http://perldoc.perl.org
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://en.wikibooks.org/wiki/Embedded%20Systems%2FMixed%20C%20and%20Assembly%20Programming
http://pl.wikibooks.org/wiki/C%2F%C5%81%C4%85czenie%20z%20innymi%20j%C4%99zykami

34 Code library

The following is an implementation of the Standard C99 version of <assert.h>:

/* assert.h header */

#undef assert

#ifdef NDEBUG

#define assert(_Ignore) ((void)0)

#else

void _Assertfail(char *, char *, int, char *);

#define assert(_Test)

((_Test)?((void)0):_Assertfail(#_Test,__FILE__,__LINE__,__func__))

#endif

/* END OF FILE */

/* xassertfail.c -- _Assertfail function */

#include <stdlib.h>

#include <stdio.h>

#include <assert.h>

void

_Assertfail(char *test, char *filename, int line_number, char *function_name)

{

fprintf(stderr, "Assertion failed: %s, function %s, file %s, line %d.",

test, function_name, filename, line_number);

abort();

}

/* END OF FILE */

243

35 Computer Programming

The following articles are C adaptations from articles of the Computer programming1 book.

1 http://en.wikibooks.org/wiki/Computer%20programming

245

http://en.wikibooks.org/wiki/Computer%20programming

36 Statements

A statement is a command given to the computer that instructs the computer to take a
specific action, such as display to the screen, or collect input. A computer program is made
up of a series of statements.

puts ("Hi there!");

puts ("Hi there!");

puts ("Strange things are afoot...");

Category:C Programming1

1 http://en.wikibooks.org/wiki/Category%3AC%20Programming

247

http://en.wikibooks.org/wiki/Category%3AC%20Programming

37 C Reference Tables

This section has some tables and lists of C entities.

249

38 Reference Tables

38.1 List of Keywords

ANSI C (C89)/ISO C (C90) keywords:

• auto

• break

• case

• char

• const

• continue

• default

• do

• double

• else

• enum

• extern

• float

• for

• goto

• if

• int

• long

• register

• return

• short

• signed

• sizeof

• static

• struct

• switch

• typedef

• union

• unsigned

• void

• volatile

• while

Keywords added to ISO C (C99) (Supported only in new compilers):

• _Bool

• _Complex

• _Imaginary

• inline

• restrict1

Specific compilers may (in a non-standard-compliant mode) also treat some other words as
keywords, including asm, cdecl, far, fortran, huge, interrupt, near, pascal, typeof.

Very old compilers may not recognize some or all of the C89 keywords const, enum, signed,
void, volatile as well as the C99 keywords.

See also the list of reserved identifiers2.

38.2 List of Standard Headers

ANSI C (C89)/ISO C (C90) headers:

1 http://en.wikipedia.org/wiki/Restrict

2
http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/

language/ref/clrc02reserved_identifiers.htm

251

http://en.wikipedia.org/wiki/Restrict
http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/language/ref/clrc02reserved_identifiers.htm
http://publib.boulder.ibm.com/infocenter/comphelp/v7v91/topic/com.ibm.vacpp7a.doc/language/ref/clrc02reserved_identifiers.htm

Reference Tables

• <assert.h>3

• <ctype.h>4

• <errno.h>5

• <float.h>6

• <limits.h>7

• <locale.h>8

• <math.h>9

• <setjmp.h>10

• <signal.h>11

• <stdarg.h>12

• <stddef.h>13

• <stdio.h>14

• <stdlib.h>15

• <string.h>16

• <time.h>
17

Very old compilers may not include some or all of the following headers:

Headers added to ISO C (C94/C95) in Amendment 1 (AMD1):

• <iso646.h>18 • <wchar.h>19 • <wctype.h>20

Headers added to ISO C (C99) (Supported only in new compilers):

• <complex.h>21

• <fenv.h>22

• <inttypes.h>23

• <stdbool.h>24

• <stdint.h>25

• <tgmath.h>26

3 http://en.wikipedia.org/wiki/Assert.h

4 http://en.wikipedia.org/wiki/Ctype.h

5 http://en.wikipedia.org/wiki/Errno.h

6 http://en.wikipedia.org/wiki/Float.h

7 http://en.wikipedia.org/wiki/Limits.h

8 http://en.wikipedia.org/wiki/Locale.h

9 http://en.wikipedia.org/wiki/Math.h

10 http://en.wikipedia.org/wiki/Setjmp.h

11 http://en.wikipedia.org/wiki/Signal.h

12 http://en.wikipedia.org/wiki/Stdarg.h

13 http://en.wikipedia.org/wiki/Stddef.h

14 http://en.wikipedia.org/wiki/Stdio.h

15 http://en.wikipedia.org/wiki/Stdlib.h

16 http://en.wikipedia.org/wiki/String.h

17 http://en.wikipedia.org/wiki/Time.h

18 http://en.wikipedia.org/wiki/Iso646.h

19 http://en.wikipedia.org/wiki/Wchar.h

20 http://en.wikipedia.org/wiki/Wctype.h

21 http://en.wikipedia.org/wiki/Complex.h

22 http://en.wikipedia.org/wiki/Fenv.h

23 http://en.wikipedia.org/wiki/Inttypes.h

24 http://en.wikipedia.org/wiki/Stdbool.h

25 http://en.wikipedia.org/wiki/Stdint.h

26 http://en.wikipedia.org/wiki/Tgmath.h

252

http://en.wikipedia.org/wiki/Assert.h
http://en.wikipedia.org/wiki/Ctype.h
http://en.wikipedia.org/wiki/Errno.h
http://en.wikipedia.org/wiki/Float.h
http://en.wikipedia.org/wiki/Limits.h
http://en.wikipedia.org/wiki/Locale.h
http://en.wikipedia.org/wiki/Math.h
http://en.wikipedia.org/wiki/Setjmp.h
http://en.wikipedia.org/wiki/Signal.h
http://en.wikipedia.org/wiki/Stdarg.h
http://en.wikipedia.org/wiki/Stddef.h
http://en.wikipedia.org/wiki/Stdio.h
http://en.wikipedia.org/wiki/Stdlib.h
http://en.wikipedia.org/wiki/String.h
http://en.wikipedia.org/wiki/Time.h
http://en.wikipedia.org/wiki/Iso646.h
http://en.wikipedia.org/wiki/Wchar.h
http://en.wikipedia.org/wiki/Wctype.h
http://en.wikipedia.org/wiki/Complex.h
http://en.wikipedia.org/wiki/Fenv.h
http://en.wikipedia.org/wiki/Inttypes.h
http://en.wikipedia.org/wiki/Stdbool.h
http://en.wikipedia.org/wiki/Stdint.h
http://en.wikipedia.org/wiki/Tgmath.h

Table of Operators

38.3 Table of Operators

Operators in the same row of this table have the same precedence and the order of
evaluation is decided by the associativity (left-to-right or right-to-left). Operators closer
to the top of this table have higher precedence than those in a subsequent group.

Operators Description Example Usage Associativ-
ity

Postfix operators

Left to right
() function call opera-

tor
swap (x, y)

[] array index opera-
tor

arr [i]

. member access op-
erator
for an object of
struct/union type
or a reference to it

obj.member

-> member access op-
erator
for a pointer to an
object of
struct/union type

ptr->member

Unary Operators

Right to left

! logical not operator !eof_reached

˜ bitwise not operator ˜mask

+ -[1]27
unary plus/minus
operators

-num

++ -- post-
increment/decrement
operators

num++

++ -- pre-
increment/decrement
operators

++num

& address-of operator &data

* indirection operator *ptr

sizeof sizeof operator for
expressions

sizeof 123

sizeof() sizeof operator for
types

sizeof (int)

(type) cast operator (float)i

Multiplicative Operators
Left to right

27 Chapter 38.3.1 on page 255

253

Reference Tables

* / % multiplication, divi-
sion and
modulus operators

celsius_diff *

9.0 / 5.0

Additive Operators
Left to right

+ - addition and sub-
traction operators

end - start + 1

Bitwise Shift Operators
Left to right<< left shift operator bits << shift_len

>> right shift operator bits >> shift_len

Relational Inequality Operators
Left to right

< > <= >= less-than, greater-
than, less-than or
equal-to, greater-
than or equal-to
operators

i < num_elements

Relational Equality Operators
Left to right

== != equal-to, not-equal-
to

choice != 'n'

Bitwise And Operator
Left to right

& bits &

clear_mask_complement

Bitwise Xor Operator
Left to right

ˆ bits ˆ

invert_mask

Bitwise Or Operator
Left to right

| bits | set_mask

Logical And Operator
Left to right

&& arr != 0 &&

arr->len != 0

Logical Or Operator
Left to right

254

Table of Data Types

|| see Logical Ex-
pressions28

arr == 0 ||

arr->len == 0

Conditional Operator
Right to left

?: size != 0 ? size

: 0

Assignment Operators
Right to left= assignment operator i = 0

+= -= *= /=

%= &= |= ˆ=

<<= >>=

shorthand assign-
ment operators
(foo op=

barrepresents
foo = foo op bar)

num /= 10

Comma Operator
Left to right

, i = 0, j = i + 1,

k = 0

38.3.1 Table of Operators Footnotes

[1]Very old compilers may not recognize the unary + operator.

et:Programmeerimiskeel C/Operaatorid29

38.4 Table of Data Types

28 Chapter 16.1.2 on page 85
29 http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FOperaatorid

255

http://et.wikibooks.org/wiki/Programmeerimiskeel%20C%2FOperaatorid

Reference Tables

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
char ≥ 8

• sizeof gives the
size in units of
chars. These "C
bytes" need not be
8-bit bytes (though
commonly they
are); the number of
bits is given by the
CHAR_BIT macro in
the limits.h header.

• Signedness is
implementation-
defined.

• Any encoding of
8 bits or less (e.g.
ASCII) can be used
to store characters.

• Integer operations
can be performed
portably only for the
range 0 ˜ 127.

• All bits contribute
to the value of the
char, i.e. there
are no "holes" or
"padding" bits.

—

signed char same as char

• Characters stored
like for type char.

• Can store integers in
the range -127 ˜ 127

portably[1]30
.

—

unsigned char same as char

• Characters stored
like for type char.

• Can store integers
in the range 0 ˜ 255
portably.

—

short ≥ 16, ≥ size of char

• Can store integers in
the range -32767 ˜

32767 portably[2]31
.

• Used to reduce
memory usage (al-
though the resulting
executable may be
larger and probably
slower as compared
to using int.

short int, signed

short, signed short

int

30 Chapter 38.4.1 on page 260
31 Chapter 38.4.1 on page 260

256

Table of Data Types

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
unsigned short same as short

• Can store integers in
the range 0 ˜ 65535
portably.

• Used to reduce
memory usage (al-
though the resulting
executable may be
larger and probably
slower as compared
to using int.

unsigned short int

int ≥ 16, ≥ size of short

• Represents the "nor-
mal" size of data the
processor deals with
(the word-size); this
is the integral data-
type used normally.

• Can store integers in
the range -32767 ˜

32767 portably[2]32
.

signed, signed int

unsigned int same as int

• Can store integers in
the range 0 ˜ 65535
portably.

unsigned

long ≥ 32, ≥ size of int

• Can store inte-
gers in the range
-2147483647
˜ 2147483647
portably[3]33

.

long int, signed long,
signed long int

unsigned long same as long

• Can store integers
in the range 0 ˜
4294967295 portably.

unsigned long int

float ≥ size of char

• Used to reduce
memory usage when
the values used do
not vary widely.

• The floating-point
format used is im-
plementation defined
and need not be
the IEEE single-
precision format.

• unsigned cannot be
specified.

—

32 Chapter 38.4.1 on page 260
33 Chapter 38.4.1 on page 260

257

Reference Tables

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
double ≥ size of float

• Represents the "nor-
mal" size of data the
processor deals with;
this is the floating-
point data-type used
normally.

• The floating-point
format used is im-
plementation defined
and need not be
the IEEE double-
precision format.

• unsigned cannot be
specified.

—

long double ≥ size of double

• unsigned cannot be
specified.

—

Primitive Types added to ISO C (C99)
long long ≥ 64, ≥ size of long

• Can store integers
in the range -
9223372036854775807
˜
9223372036854775807
portably[4]34

.

long long int, signed

long long, signed long

long int

unsigned long long same as long long

• Can store integers
in the range 0 ˜
18446744073709551615
portably.

unsigned long long

int

intmax_t the maximum width
supported by the plat-
form

• Can store integers
in the range -(1 <<
n-1)+1 ˜ (1 << n-
1)-1, with 'n' the
width of intmax_t.

• Used by the "j"
length modifier
in the C Pro-
gramming/File
IO#Formatted
output functions:
the printf family of
functions35.

—

uintmax_t same as intmax_t

• Can store integers in
the range 0 ˜ (1 <<
n)-1, with 'n' the
width of uintmax_t.

—

User Defined Types

34 Chapter 38.4.1 on page 260
35 Chapter 21.4 on page 137

258

Table of Data Types

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)
struct ≥ sum of size of each

member • Said to be an aggre-

gate type.

—

union ≥ size of the largest
member • Said to be an aggre-

gate type.

—

enum ≥ size of char

• Enumerations are a
separate type from
ints, though they
are mutually con-
vertible.

—

typedef same as the type being
given a name • typedef has syntax

similar to a storage
class like static,
register or extern.

—

Derived Types[5]36

type*

(pointer)
≥ size of char

• 0 always represents
the null pointer (an
address where no
data can be placed),
irrespective of what
bit sequence repre-
sents the value of a
null pointer.

• Pointers to differ-
ent types may have
different representa-
tions, which means
they could also be
of different sizes. So
they are not convert-
ible to one another.

• Even in an imple-
mentation which
guarantess all data
pointers to be of the
same size, function
pointers and data
pointers are in gen-
eral incompatible
with each other.

• For functions taking
variable number of
arguments, the argu-
ments passed must
be of appropriate
type, so even 0 must
be cast to the appro-
priate type in such
function-calls.

—

36 Chapter 38.4.1 on page 260

259

Reference Tables

Type Size in Bits Comments Alternative Names
Primitive Types in ANSI C (C89)/ISO C (C90)

type [integer[6]37
]

(array)
≥ integer × size of type

• The brackets ([])
follow the identifier
name in a declara-
tion.

• In a declaration
which also initializes
the array (including
a function parameter
declaration), the
size of the array
(the integer) can be
omitted.

• type [] is not the
same as type*. Only
under some circum-
stances one can be
converted to the
other.

—

type (comma-delimited

list of

types/declarations)

(function)

—
• Functions declared

without any storage
class are extern.

• The parentheses (())
follow the identifier
name in a declara-
tion, e.g. a 2-arg
function pointer:
int (* fptr) (int

arg1, int arg2).

—

38.4.1 Table of Data Types Footnotes

[1] -128 can be stored in two's-complement machines (i.e. most machines in existence).
Very old compilers may not recognize the signed keyword.
[2] -32768 can be stored in two's-complement machines (i.e. most machines in exis-
tence). Very old compilers may not recognize the signed keyword.
[3] -2147483648 can be stored in two's-complement machines (i.e. most machines in
existence). Very old compilers may not recognize the signed keyword.
[4] -9223372036854775808 can be stored in two's-complement machines (i.e. most ma-
chines in existence).
[5] The precedences in a declaration are:
[], () (left associative) — Highest
* (right associative) — Lowest

[6] The standards do NOT place any restriction on the size/type of the in-
teger, it's implementation dependent. The only mention in the standards
is a reference that an implementation may have limits to the maximum
size of memory block which can be allocated, and as such the limit on in-
teger will be size_of_max_block/sizeof(type).

37 Chapter 38.4.1 on page 260

260

Table of Data Types

pl:C/Składnia38

38 http://pl.wikibooks.org/wiki/C%2FSk%C5%82adnia

261

http://pl.wikibooks.org/wiki/C%2FSk%C5%82adnia

39 Compilers

39.1 Free (or with a free version)

• Ch_interpreter1 (http://www.softintegration.com) - The software works in Win-
dows, Linux, Mac OS X, Freebsd, Solaris, AIX and HP-UX. The Ch Standard Edition
is free for noncommercial use.

• lcc-win322 (http://www.cs.virginia.edu/~lcc-win32) - Software copyrighted by Ja-
cob Navia. It is free for non-commercial use. Windows (98/ME/XP/2000/NT).

• GNU Compiler Collection3 (http://gcc.gnu.org) - GNU Compiler Collection. GNU
General Public License / GNU Lesser General Public License.
• MinGW4 (http://www.mingw.org/) provides GCC for Windows

• Open Watcom5 (http://www.openwatcom.org) Open Source development community
to maintain and enhance the Watcom C/C++ and Fortran cross compilers and tools.
Version 1.4 released in December 2005.
• Host Platforms: Win32 systems (IDE and command line), 32-bit OS/2 (IDE and

command line), DOS (command line), and Windows 3.x (IDE)
• Target Platforms: DOS (16-bit), Windows 3.x (16-bit), OS/2 1.x (16-bit), Ex-

tended DOS, Win32s, Windows 95/98/Me, Windows NT/2000/XP, 32-bit OS/2, and
Novell NLMs

• Experimental / Development: Linux, BSD, *nix, PowerPC, Alpha AXP, MIPS,
and Sparc v8

• Tiny C Compiler6

• Portable C Compiler7 (http://pcc.ludd.ltu.se) - Portable C Compiler. BSD Style
License(s).

• Small Device C Compiler8 (SDCC)
• target platforms: Intel 8051-compatibles; Freescale (Motorola) HC08; Microchip

PIC16 and PIC18.
• FpgaC9. Target platform: FPGA hardware via XNF or VHDL files.
• Interactive C10 (http://www.botball.org/educational-resources/ic.php).

• target platform: Handy Board (Freescale 68HC11); Lego RCX

1 http://en.wikipedia.org/wiki/Ch_interpreter

2 http://en.wikipedia.org/wiki/lcc-win32

3 http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection

4 http://en.wikipedia.org/wiki/MinGW

5 http://en.wikipedia.org/wiki/Open%20Watcom

6 http://en.wikipedia.org/wiki/Tiny%20C%20Compiler

7 http://en.wikipedia.org/wiki/Portable%20C%20Compiler

8 http://en.wikipedia.org/wiki/Small%20Device%20C%20Compiler

9 http://en.wikipedia.org/wiki/FpgaC

10 http://en.wikipedia.org/wiki/Interactive%20C

263

http://www.softintegration.com)
http://www.cs.virginia.edu/~lcc-win32)
http://gcc.gnu.org)
http://www.mingw.org/)
http://www.openwatcom.org)
http://pcc.ludd.ltu.se)
http://www.botball.org/educational-resources/ic.php).
http://en.wikipedia.org/wiki/Ch_interpreter
http://en.wikipedia.org/wiki/lcc-win32
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://en.wikipedia.org/wiki/MinGW
http://en.wikipedia.org/wiki/Open%20Watcom
http://en.wikipedia.org/wiki/Tiny%20C%20Compiler
http://en.wikipedia.org/wiki/Portable%20C%20Compiler
http://en.wikipedia.org/wiki/Small%20Device%20C%20Compiler
http://en.wikipedia.org/wiki/FpgaC
http://en.wikipedia.org/wiki/Interactive%20C

Compilers

• C compilers for many digital signal processors (DSPs), many of them free, are listed in
the comp.dsp FAQ11.

39.2 Commercial

• Intel C Compiler12 (http://software.intel.com/en-us/intel-compilers) - Win-
dows, Linux, Mac, QNX, and embedded C/C++ compilers. Optimized for Intel 32-bit
and 64-bit CPUs.

• Microsoft Visual C++13 (http://msdn.microsoft.com/visualc) - Free (partially lim-
ited) version available (Express edition)

• Impulse C14 - Target platform: FPGA hardware via Hardware Description Language
(HDL) files.

11 http://www.bdti.com/faq/3.htm

12 http://en.wikipedia.org/wiki/Intel%20C%20Compiler

13 http://en.wikipedia.org/wiki/Microsoft%20Visual%20C%2B%2B

14 http://en.wikipedia.org/wiki/Impulse%20C

264

http://software.intel.com/en-us/intel-compilers)
http://msdn.microsoft.com/visualc)
http://www.bdti.com/faq/3.htm
http://en.wikipedia.org/wiki/Intel%20C%20Compiler
http://en.wikipedia.org/wiki/Microsoft%20Visual%20C%2B%2B
http://en.wikipedia.org/wiki/Impulse%20C

40 Contributors

Edits User
1 16@r1

30 A thing2

8 A3 nm3

1 Ab8uu4

1 Abdull5

12 Adam majewski6

13 Adrignola7

1 Aentity8

5 AlbertCahalan9

6 Albmont10

1 AlistairMcMillan11

3 AllenZh12

1 Alsocal13

1 Alvin-cs14

4 Andrew Eugene15

1 Angus Lepper16

1 Arbitrarily017

43 Astone4218

1 Asymmetric19

7 Avicennasis20

2 Az156821

1 http://en.wikibooks.org/wiki/User:16@r

2 http://en.wikibooks.org/wiki/User:A_thing

3 http://en.wikibooks.org/wiki/User:A3_nm

4 http://en.wikibooks.org/wiki/User:Ab8uu

5 http://en.wikibooks.org/wiki/User:Abdull

6 http://en.wikibooks.org/wiki/User:Adam_majewski

7 http://en.wikibooks.org/wiki/User:Adrignola

8 http://en.wikibooks.org/wiki/User:Aentity

9 http://en.wikibooks.org/wiki/User:AlbertCahalan

10 http://en.wikibooks.org/wiki/User:Albmont

11 http://en.wikibooks.org/wiki/Special:Contributions/AlistairMcMillan

12 http://en.wikibooks.org/wiki/User:AllenZh

13 http://en.wikibooks.org/wiki/User:Alsocal

14 http://en.wikibooks.org/wiki/Special:Contributions/Alvin-cs

15 http://en.wikibooks.org/wiki/User:Andrew_Eugene

16 http://en.wikibooks.org/wiki/Special:Contributions/Angus_Lepper

17 http://en.wikibooks.org/wiki/User:Arbitrarily0

18 http://en.wikibooks.org/wiki/User:Astone42

19 http://en.wikibooks.org/wiki/Special:Contributions/Asymmetric

20 http://en.wikibooks.org/wiki/User:Avicennasis

21 http://en.wikibooks.org/wiki/User:Az1568

265

http://en.wikibooks.org/wiki/User:16@r
http://en.wikibooks.org/wiki/User:A_thing
http://en.wikibooks.org/wiki/User:A3_nm
http://en.wikibooks.org/wiki/User:Ab8uu
http://en.wikibooks.org/wiki/User:Abdull
http://en.wikibooks.org/wiki/User:Adam_majewski
http://en.wikibooks.org/wiki/User:Adrignola
http://en.wikibooks.org/wiki/User:Aentity
http://en.wikibooks.org/wiki/User:AlbertCahalan
http://en.wikibooks.org/wiki/User:Albmont
http://en.wikibooks.org/wiki/Special:Contributions/AlistairMcMillan
http://en.wikibooks.org/wiki/User:AllenZh
http://en.wikibooks.org/wiki/User:Alsocal
http://en.wikibooks.org/wiki/Special:Contributions/Alvin-cs
http://en.wikibooks.org/wiki/User:Andrew_Eugene
http://en.wikibooks.org/wiki/Special:Contributions/Angus_Lepper
http://en.wikibooks.org/wiki/User:Arbitrarily0
http://en.wikibooks.org/wiki/User:Astone42
http://en.wikibooks.org/wiki/Special:Contributions/Asymmetric
http://en.wikibooks.org/wiki/User:Avicennasis
http://en.wikibooks.org/wiki/User:Az1568

Contributors

1 BL22

1 BOTarate23

1 Berkunt24

3 Bevo25

9 BimBot26

2 Binksternet27

1 Blanchardb28

1 Bobo19229

1 Bpringlemeir30

1 Buggi2231

12 CarsracBot32

14 CharmlessCoin33

2 Chobot34

2 Ckorff35

1 CrQAZ36

1 Cryptic37

1 Cybiko12338

2 Cyp39

1 D640

1 DHN-bot41

1 Da monster under your bed42

4 Dan Polansky43

2 Darklama44

60 DavidCary45

1 Deathanatos46

22 http://en.wikibooks.org/wiki/Special:Contributions/BL

23 http://en.wikibooks.org/wiki/Special:Contributions/BOTarate

24 http://en.wikibooks.org/wiki/Special:Contributions/Berkunt

25 http://en.wikibooks.org/wiki/User:Bevo

26 http://en.wikibooks.org/wiki/User:BimBot

27 http://en.wikibooks.org/wiki/Special:Contributions/Binksternet

28 http://en.wikibooks.org/wiki/Special:Contributions/Blanchardb

29 http://en.wikibooks.org/wiki/Special:Contributions/Bobo192

30 http://en.wikibooks.org/wiki/Special:Contributions/Bpringlemeir

31 http://en.wikibooks.org/wiki/User:Buggi22

32 http://en.wikibooks.org/wiki/User:CarsracBot

33 http://en.wikibooks.org/wiki/User:CharmlessCoin

34 http://en.wikibooks.org/wiki/Special:Contributions/Chobot

35 http://en.wikibooks.org/wiki/Special:Contributions/Ckorff

36 http://en.wikibooks.org/wiki/Special:Contributions/CrQAZ

37 http://en.wikibooks.org/wiki/User:Cryptic

38 http://en.wikibooks.org/wiki/User:Cybiko123

39 http://en.wikibooks.org/wiki/User:Cyp

40 http://en.wikibooks.org/wiki/Special:Contributions/D6

41 http://en.wikibooks.org/wiki/Special:Contributions/DHN-bot

42 http://en.wikibooks.org/wiki/Special:Contributions/Da_monster_under_your_bed

43 http://en.wikibooks.org/wiki/User:Dan_Polansky

44 http://en.wikibooks.org/wiki/User:Darklama

45 http://en.wikibooks.org/wiki/User:DavidCary

46 http://en.wikibooks.org/wiki/Special:Contributions/Deathanatos

266

http://en.wikibooks.org/wiki/Special:Contributions/BL
http://en.wikibooks.org/wiki/Special:Contributions/BOTarate
http://en.wikibooks.org/wiki/Special:Contributions/Berkunt
http://en.wikibooks.org/wiki/User:Bevo
http://en.wikibooks.org/wiki/User:BimBot
http://en.wikibooks.org/wiki/Special:Contributions/Binksternet
http://en.wikibooks.org/wiki/Special:Contributions/Blanchardb
http://en.wikibooks.org/wiki/Special:Contributions/Bobo192
http://en.wikibooks.org/wiki/Special:Contributions/Bpringlemeir
http://en.wikibooks.org/wiki/User:Buggi22
http://en.wikibooks.org/wiki/User:CarsracBot
http://en.wikibooks.org/wiki/User:CharmlessCoin
http://en.wikibooks.org/wiki/Special:Contributions/Chobot
http://en.wikibooks.org/wiki/Special:Contributions/Ckorff
http://en.wikibooks.org/wiki/Special:Contributions/CrQAZ
http://en.wikibooks.org/wiki/User:Cryptic
http://en.wikibooks.org/wiki/User:Cybiko123
http://en.wikibooks.org/wiki/User:Cyp
http://en.wikibooks.org/wiki/Special:Contributions/D6
http://en.wikibooks.org/wiki/Special:Contributions/DHN-bot
http://en.wikibooks.org/wiki/Special:Contributions/Da_monster_under_your_bed
http://en.wikibooks.org/wiki/User:Dan_Polansky
http://en.wikibooks.org/wiki/User:Darklama
http://en.wikibooks.org/wiki/User:DavidCary
http://en.wikibooks.org/wiki/Special:Contributions/Deathanatos

Commercial

13 Derbeth47

1 Deryck Chan48

4 Dirk Hünniger49

1 Doshell50

2 Duplode51

15 EdC52

1 Edudobay53

8 Emperorbma54

5 Eric11955

1 Erkan Yilmaz56

2 Ervinn57

3 Felipebm58

1 Fourier.courier59

1 Frigotoni60

1 Giftlite61

1 Golftheman62

1 Grandscribe63

1 Graue64

4 Gsonnenf65

1 Guanabot66

1 Gulmammad67

3 Gwern68

2 Hagindaz69

1 HasharBot70

1 Hdante71

47 http://en.wikibooks.org/wiki/User:Derbeth

48 http://en.wikibooks.org/wiki/User:Deryck_Chan

49 http://en.wikibooks.org/wiki/User:Dirk_H%25C3%25BCnniger

50 http://en.wikibooks.org/wiki/Special:Contributions/Doshell

51 http://en.wikibooks.org/wiki/User:Duplode

52 http://en.wikibooks.org/wiki/Special:Contributions/EdC

53 http://en.wikibooks.org/wiki/User:Edudobay

54 http://en.wikibooks.org/wiki/User:Emperorbma

55 http://en.wikibooks.org/wiki/User:Eric119

56 http://en.wikibooks.org/wiki/User:Erkan_Yilmaz

57 http://en.wikibooks.org/wiki/User:Ervinn

58 http://en.wikibooks.org/wiki/User:Felipebm

59 http://en.wikibooks.org/wiki/Special:Contributions/Fourier.courier

60 http://en.wikibooks.org/wiki/User:Frigotoni

61 http://en.wikibooks.org/wiki/Special:Contributions/Giftlite

62 http://en.wikibooks.org/wiki/Special:Contributions/Golftheman

63 http://en.wikibooks.org/wiki/Special:Contributions/Grandscribe

64 http://en.wikibooks.org/wiki/Special:Contributions/Graue

65 http://en.wikibooks.org/wiki/Special:Contributions/Gsonnenf

66 http://en.wikibooks.org/wiki/User:Guanabot

67 http://en.wikibooks.org/wiki/User:Gulmammad

68 http://en.wikibooks.org/wiki/User:Gwern

69 http://en.wikibooks.org/wiki/User:Hagindaz

70 http://en.wikibooks.org/wiki/Special:Contributions/HasharBot

71 http://en.wikibooks.org/wiki/Special:Contributions/Hdante

267

http://en.wikibooks.org/wiki/User:Derbeth
http://en.wikibooks.org/wiki/User:Deryck_Chan
http://en.wikibooks.org/wiki/User:Dirk_H%25C3%25BCnniger
http://en.wikibooks.org/wiki/Special:Contributions/Doshell
http://en.wikibooks.org/wiki/User:Duplode
http://en.wikibooks.org/wiki/Special:Contributions/EdC
http://en.wikibooks.org/wiki/User:Edudobay
http://en.wikibooks.org/wiki/User:Emperorbma
http://en.wikibooks.org/wiki/User:Eric119
http://en.wikibooks.org/wiki/User:Erkan_Yilmaz
http://en.wikibooks.org/wiki/User:Ervinn
http://en.wikibooks.org/wiki/User:Felipebm
http://en.wikibooks.org/wiki/Special:Contributions/Fourier.courier
http://en.wikibooks.org/wiki/User:Frigotoni
http://en.wikibooks.org/wiki/Special:Contributions/Giftlite
http://en.wikibooks.org/wiki/Special:Contributions/Golftheman
http://en.wikibooks.org/wiki/Special:Contributions/Grandscribe
http://en.wikibooks.org/wiki/Special:Contributions/Graue
http://en.wikibooks.org/wiki/Special:Contributions/Gsonnenf
http://en.wikibooks.org/wiki/User:Guanabot
http://en.wikibooks.org/wiki/User:Gulmammad
http://en.wikibooks.org/wiki/User:Gwern
http://en.wikibooks.org/wiki/User:Hagindaz
http://en.wikibooks.org/wiki/Special:Contributions/HasharBot
http://en.wikibooks.org/wiki/Special:Contributions/Hdante

Contributors

1 HethrirBot72

1 Hongooi73

6 Hoxel74

1 I do not exist75

1 Icewedge76

3 Imran77

3 Intermediate-Hacker78

1 Iopq79

2 J.delanoy80

1 JAnDbot81

1 JL-Bot82

2 JackPotte83

1 Jafeluv84

11 James Dennett85

1 JetRanger40586

22 Jfmantis87

4 Jguk88

1 Jni89

25 Jomegat90

1 Jorgenev91

1 Jwwicks92

1 Kayau93

1 Kazabubu94

23 Kevinpaladin95

1 Keytotime96

72 http://en.wikibooks.org/wiki/User:HethrirBot

73 http://en.wikibooks.org/wiki/Special:Contributions/Hongooi

74 http://en.wikibooks.org/wiki/User:Hoxel

75 http://en.wikibooks.org/wiki/Special:Contributions/I_do_not_exist

76 http://en.wikibooks.org/wiki/User:Icewedge

77 http://en.wikibooks.org/wiki/User:Imran

78 http://en.wikibooks.org/wiki/User:Intermediate-Hacker

79 http://en.wikibooks.org/wiki/User:Iopq

80 http://en.wikibooks.org/wiki/User:J.delanoy

81 http://en.wikibooks.org/wiki/Special:Contributions/JAnDbot

82 http://en.wikibooks.org/wiki/Special:Contributions/JL-Bot

83 http://en.wikibooks.org/wiki/User:JackPotte

84 http://en.wikibooks.org/wiki/User:Jafeluv

85 http://en.wikibooks.org/wiki/User:James_Dennett

86 http://en.wikibooks.org/wiki/Special:Contributions/JetRanger405

87 http://en.wikibooks.org/wiki/User:Jfmantis

88 http://en.wikibooks.org/wiki/User:Jguk

89 http://en.wikibooks.org/wiki/User:Jni

90 http://en.wikibooks.org/wiki/User:Jomegat

91 http://en.wikibooks.org/wiki/User:Jorgenev

92 http://en.wikibooks.org/wiki/User:Jwwicks

93 http://en.wikibooks.org/wiki/User:Kayau

94 http://en.wikibooks.org/wiki/Special:Contributions/Kazabubu

95 http://en.wikibooks.org/wiki/User:Kevinpaladin

96 http://en.wikibooks.org/wiki/User:Keytotime

268

http://en.wikibooks.org/wiki/User:HethrirBot
http://en.wikibooks.org/wiki/Special:Contributions/Hongooi
http://en.wikibooks.org/wiki/User:Hoxel
http://en.wikibooks.org/wiki/Special:Contributions/I_do_not_exist
http://en.wikibooks.org/wiki/User:Icewedge
http://en.wikibooks.org/wiki/User:Imran
http://en.wikibooks.org/wiki/User:Intermediate-Hacker
http://en.wikibooks.org/wiki/User:Iopq
http://en.wikibooks.org/wiki/User:J.delanoy
http://en.wikibooks.org/wiki/Special:Contributions/JAnDbot
http://en.wikibooks.org/wiki/Special:Contributions/JL-Bot
http://en.wikibooks.org/wiki/User:JackPotte
http://en.wikibooks.org/wiki/User:Jafeluv
http://en.wikibooks.org/wiki/User:James_Dennett
http://en.wikibooks.org/wiki/Special:Contributions/JetRanger405
http://en.wikibooks.org/wiki/User:Jfmantis
http://en.wikibooks.org/wiki/User:Jguk
http://en.wikibooks.org/wiki/User:Jni
http://en.wikibooks.org/wiki/User:Jomegat
http://en.wikibooks.org/wiki/User:Jorgenev
http://en.wikibooks.org/wiki/User:Jwwicks
http://en.wikibooks.org/wiki/User:Kayau
http://en.wikibooks.org/wiki/Special:Contributions/Kazabubu
http://en.wikibooks.org/wiki/User:Kevinpaladin
http://en.wikibooks.org/wiki/User:Keytotime

Commercial

1 Kiensvay97

2 Kinglag98

1 Kj99

25 Krischik100

1 Ksn101

1 Kvgk102

1 Leftspk103

2 Liam987104

1 Lightbot105

3 Lincher106

3 Logictheo107

1 Lynx7725108

8 M2s87109

1 MF-Warburg110

1 MaTT111

4 MadCowpoke112

51 Maffu113

1 Mahanga114

1 ManiacK115

2 ManuelGR116

1 Markhobley117

1 Martyn Lovell118

1 Mattb112885119

3 MeMoria120

1 Mecanismo121

97 http://en.wikibooks.org/wiki/User:Kiensvay

98 http://en.wikibooks.org/wiki/User:Kinglag

99 http://en.wikibooks.org/wiki/User:Kj

100 http://en.wikibooks.org/wiki/User:Krischik

101 http://en.wikibooks.org/wiki/Special:Contributions/Ksn

102 http://en.wikibooks.org/wiki/Special:Contributions/Kvgk

103 http://en.wikibooks.org/wiki/Special:Contributions/Leftspk

104 http://en.wikibooks.org/wiki/User:Liam987

105 http://en.wikibooks.org/wiki/Special:Contributions/Lightbot

106 http://en.wikibooks.org/wiki/User:Lincher

107 http://en.wikibooks.org/wiki/User:Logictheo

108 http://en.wikibooks.org/wiki/User:Lynx7725

109 http://en.wikibooks.org/wiki/User:M2s87

110 http://en.wikibooks.org/wiki/User:MF-Warburg

111 http://en.wikibooks.org/wiki/Special:Contributions/MaTT

112 http://en.wikibooks.org/wiki/User:MadCowpoke

113 http://en.wikibooks.org/wiki/User:Maffu

114 http://en.wikibooks.org/wiki/User:Mahanga

115 http://en.wikibooks.org/wiki/Special:Contributions/ManiacK

116 http://en.wikibooks.org/wiki/User:ManuelGR

117 http://en.wikibooks.org/wiki/User:Markhobley

118 http://en.wikibooks.org/wiki/Special:Contributions/Martyn_Lovell

119 http://en.wikibooks.org/wiki/User:Mattb112885

120 http://en.wikibooks.org/wiki/User:MeMoria

121 http://en.wikibooks.org/wiki/User:Mecanismo

269

http://en.wikibooks.org/wiki/User:Kiensvay
http://en.wikibooks.org/wiki/User:Kinglag
http://en.wikibooks.org/wiki/User:Kj
http://en.wikibooks.org/wiki/User:Krischik
http://en.wikibooks.org/wiki/Special:Contributions/Ksn
http://en.wikibooks.org/wiki/Special:Contributions/Kvgk
http://en.wikibooks.org/wiki/Special:Contributions/Leftspk
http://en.wikibooks.org/wiki/User:Liam987
http://en.wikibooks.org/wiki/Special:Contributions/Lightbot
http://en.wikibooks.org/wiki/User:Lincher
http://en.wikibooks.org/wiki/User:Logictheo
http://en.wikibooks.org/wiki/User:Lynx7725
http://en.wikibooks.org/wiki/User:M2s87
http://en.wikibooks.org/wiki/User:MF-Warburg
http://en.wikibooks.org/wiki/Special:Contributions/MaTT
http://en.wikibooks.org/wiki/User:MadCowpoke
http://en.wikibooks.org/wiki/User:Maffu
http://en.wikibooks.org/wiki/User:Mahanga
http://en.wikibooks.org/wiki/Special:Contributions/ManiacK
http://en.wikibooks.org/wiki/User:ManuelGR
http://en.wikibooks.org/wiki/User:Markhobley
http://en.wikibooks.org/wiki/Special:Contributions/Martyn_Lovell
http://en.wikibooks.org/wiki/User:Mattb112885
http://en.wikibooks.org/wiki/User:MeMoria
http://en.wikibooks.org/wiki/User:Mecanismo

Contributors

8 Merrheim122

1 Michael Safyan123

3 Mike.lifeguard124

6 Mikeblas125

1 MithrandirAgain126

3 Monobi127

2 Mortense128

1 Mr.Z-man129

4 Mrquick130

1 Mshonle131

1 Mwtoews132

1 Netizen133

1 Newmanbe134

1 Nick135

2 NithinBekal136

10 Noogz137

1 OMouse138

1 Onion Bulb139

216 Orderud140

2 Otus141

1 Outlyer142

1 PGibbons143

18 Paddu144

33 Panic2k4145

20 Pcu123456789146

122 http://en.wikibooks.org/wiki/User:Merrheim

123 http://en.wikibooks.org/wiki/Special:Contributions/Michael_Safyan

124 http://en.wikibooks.org/wiki/User:Mike.lifeguard

125 http://en.wikibooks.org/wiki/Special:Contributions/Mikeblas

126 http://en.wikibooks.org/wiki/User:MithrandirAgain

127 http://en.wikibooks.org/wiki/User:Monobi

128 http://en.wikibooks.org/wiki/User:Mortense

129 http://en.wikibooks.org/wiki/User:Mr.Z-man

130 http://en.wikibooks.org/wiki/User:Mrquick

131 http://en.wikibooks.org/wiki/User:Mshonle

132 http://en.wikibooks.org/wiki/User:Mwtoews

133 http://en.wikibooks.org/wiki/Special:Contributions/Netizen

134 http://en.wikibooks.org/wiki/User:Newmanbe

135 http://en.wikibooks.org/wiki/User:Nick

136 http://en.wikibooks.org/wiki/User:NithinBekal

137 http://en.wikibooks.org/wiki/User:Noogz

138 http://en.wikibooks.org/wiki/User:OMouse

139 http://en.wikibooks.org/wiki/Special:Contributions/Onion_Bulb

140 http://en.wikibooks.org/wiki/User:Orderud

141 http://en.wikibooks.org/wiki/User:Otus

142 http://en.wikibooks.org/wiki/Special:Contributions/Outlyer

143 http://en.wikibooks.org/wiki/Special:Contributions/PGibbons

144 http://en.wikibooks.org/wiki/User:Paddu

145 http://en.wikibooks.org/wiki/User:Panic2k4

146 http://en.wikibooks.org/wiki/User:Pcu123456789

270

http://en.wikibooks.org/wiki/User:Merrheim
http://en.wikibooks.org/wiki/Special:Contributions/Michael_Safyan
http://en.wikibooks.org/wiki/User:Mike.lifeguard
http://en.wikibooks.org/wiki/Special:Contributions/Mikeblas
http://en.wikibooks.org/wiki/User:MithrandirAgain
http://en.wikibooks.org/wiki/User:Monobi
http://en.wikibooks.org/wiki/User:Mortense
http://en.wikibooks.org/wiki/User:Mr.Z-man
http://en.wikibooks.org/wiki/User:Mrquick
http://en.wikibooks.org/wiki/User:Mshonle
http://en.wikibooks.org/wiki/User:Mwtoews
http://en.wikibooks.org/wiki/Special:Contributions/Netizen
http://en.wikibooks.org/wiki/User:Newmanbe
http://en.wikibooks.org/wiki/User:Nick
http://en.wikibooks.org/wiki/User:NithinBekal
http://en.wikibooks.org/wiki/User:Noogz
http://en.wikibooks.org/wiki/User:OMouse
http://en.wikibooks.org/wiki/Special:Contributions/Onion_Bulb
http://en.wikibooks.org/wiki/User:Orderud
http://en.wikibooks.org/wiki/User:Otus
http://en.wikibooks.org/wiki/Special:Contributions/Outlyer
http://en.wikibooks.org/wiki/Special:Contributions/PGibbons
http://en.wikibooks.org/wiki/User:Paddu
http://en.wikibooks.org/wiki/User:Panic2k4
http://en.wikibooks.org/wiki/User:Pcu123456789

Commercial

9 Phosgram147

3 Pietrodn148

1 Public Menace149

6 PurplePieman150

3 QUBot151

14 QuiteUnusual152

4 Qwerky153

12 Recent Runes154

1 Redlentil155

10 Remi0o156

1 RibotBOT157

1 SPat158

1 STBot159

1 SieBot160

1 Sietse Snel161

89 Sigma 7162

1 Snowolf163

1 Somercet164

3 SoniyaR165

2 Sprink166

1 Stassats167

1 Steven jones168

1 Superm401169

2 Suruena170

5 TakuyaMurata171

147 http://en.wikibooks.org/wiki/User:Phosgram

148 http://en.wikibooks.org/wiki/User:Pietrodn

149 http://en.wikibooks.org/wiki/Special:Contributions/Public_Menace

150 http://en.wikibooks.org/wiki/User:PurplePieman

151 http://en.wikibooks.org/wiki/User:QUBot

152 http://en.wikibooks.org/wiki/User:QuiteUnusual

153 http://en.wikibooks.org/wiki/User:Qwerky

154 http://en.wikibooks.org/wiki/User:Recent_Runes

155 http://en.wikibooks.org/wiki/User:Redlentil

156 http://en.wikibooks.org/wiki/User:Remi0o

157 http://en.wikibooks.org/wiki/Special:Contributions/RibotBOT

158 http://en.wikibooks.org/wiki/User:SPat

159 http://en.wikibooks.org/wiki/Special:Contributions/STBot

160 http://en.wikibooks.org/wiki/Special:Contributions/SieBot

161 http://en.wikibooks.org/wiki/Special:Contributions/Sietse_Snel

162 http://en.wikibooks.org/wiki/User:Sigma_7

163 http://en.wikibooks.org/wiki/User:Snowolf

164 http://en.wikibooks.org/wiki/Special:Contributions/Somercet

165 http://en.wikibooks.org/wiki/User:SoniyaR

166 http://en.wikibooks.org/wiki/User:Sprink

167 http://en.wikibooks.org/wiki/User:Stassats

168 http://en.wikibooks.org/wiki/Special:Contributions/Steven_jones

169 http://en.wikibooks.org/wiki/User:Superm401

170 http://en.wikibooks.org/wiki/User:Suruena

171 http://en.wikibooks.org/wiki/User:TakuyaMurata

271

http://en.wikibooks.org/wiki/User:Phosgram
http://en.wikibooks.org/wiki/User:Pietrodn
http://en.wikibooks.org/wiki/Special:Contributions/Public_Menace
http://en.wikibooks.org/wiki/User:PurplePieman
http://en.wikibooks.org/wiki/User:QUBot
http://en.wikibooks.org/wiki/User:QuiteUnusual
http://en.wikibooks.org/wiki/User:Qwerky
http://en.wikibooks.org/wiki/User:Recent_Runes
http://en.wikibooks.org/wiki/User:Redlentil
http://en.wikibooks.org/wiki/User:Remi0o
http://en.wikibooks.org/wiki/Special:Contributions/RibotBOT
http://en.wikibooks.org/wiki/User:SPat
http://en.wikibooks.org/wiki/Special:Contributions/STBot
http://en.wikibooks.org/wiki/Special:Contributions/SieBot
http://en.wikibooks.org/wiki/Special:Contributions/Sietse_Snel
http://en.wikibooks.org/wiki/User:Sigma_7
http://en.wikibooks.org/wiki/User:Snowolf
http://en.wikibooks.org/wiki/Special:Contributions/Somercet
http://en.wikibooks.org/wiki/User:SoniyaR
http://en.wikibooks.org/wiki/User:Sprink
http://en.wikibooks.org/wiki/User:Stassats
http://en.wikibooks.org/wiki/Special:Contributions/Steven_jones
http://en.wikibooks.org/wiki/User:Superm401
http://en.wikibooks.org/wiki/User:Suruena
http://en.wikibooks.org/wiki/User:TakuyaMurata

Contributors

1 TelecomNut172

1 Thijs!bot173

33 Thunderbunny174

1 TimR175

1 Ttv176

4 Webaware177

36 Whiteknight178

2 Whym179

1 Wik180

1 WikHead181

1 Wikidemon182

2 Wj32183

3 Xania184

1 Xerol185

1 Xqbot186

16 Yacht187

1 Ygfperson188

1 Zoohouse189

3 タチコマ robot190

172 http://en.wikibooks.org/wiki/Special:Contributions/TelecomNut

173 http://en.wikibooks.org/wiki/Special:Contributions/Thijs!bot

174 http://en.wikibooks.org/wiki/User:Thunderbunny

175 http://en.wikibooks.org/wiki/Special:Contributions/TimR

176 http://en.wikibooks.org/wiki/User:Ttv

177 http://en.wikibooks.org/wiki/User:Webaware

178 http://en.wikibooks.org/wiki/User:Whiteknight

179 http://en.wikibooks.org/wiki/User:Whym

180 http://en.wikibooks.org/wiki/User:Wik

181 http://en.wikibooks.org/wiki/User:WikHead

182 http://en.wikibooks.org/wiki/Special:Contributions/Wikidemon

183 http://en.wikibooks.org/wiki/User:Wj32

184 http://en.wikibooks.org/wiki/User:Xania

185 http://en.wikibooks.org/wiki/User:Xerol

186 http://en.wikibooks.org/wiki/Special:Contributions/Xqbot

187 http://en.wikibooks.org/wiki/User:Yacht

188 http://en.wikibooks.org/wiki/Special:Contributions/Ygfperson

189 http://en.wikibooks.org/wiki/User:Zoohouse

190
http://en.wikibooks.org/wiki/User:%25E3%2582%25BF%25E3%2583%2581%25E3%2582%25B3%25E3%

2583%259E_robot

272

http://en.wikibooks.org/wiki/Special:Contributions/TelecomNut
http://en.wikibooks.org/wiki/Special:Contributions/Thijs!bot
http://en.wikibooks.org/wiki/User:Thunderbunny
http://en.wikibooks.org/wiki/Special:Contributions/TimR
http://en.wikibooks.org/wiki/User:Ttv
http://en.wikibooks.org/wiki/User:Webaware
http://en.wikibooks.org/wiki/User:Whiteknight
http://en.wikibooks.org/wiki/User:Whym
http://en.wikibooks.org/wiki/User:Wik
http://en.wikibooks.org/wiki/User:WikHead
http://en.wikibooks.org/wiki/Special:Contributions/Wikidemon
http://en.wikibooks.org/wiki/User:Wj32
http://en.wikibooks.org/wiki/User:Xania
http://en.wikibooks.org/wiki/User:Xerol
http://en.wikibooks.org/wiki/Special:Contributions/Xqbot
http://en.wikibooks.org/wiki/User:Yacht
http://en.wikibooks.org/wiki/Special:Contributions/Ygfperson
http://en.wikibooks.org/wiki/User:Zoohouse
http://en.wikibooks.org/wiki/User:%25E3%2582%25BF%25E3%2583%2581%25E3%2582%25B3%25E3%2583%259E_robot
http://en.wikibooks.org/wiki/User:%25E3%2582%25BF%25E3%2583%2581%25E3%2582%25B3%25E3%2583%259E_robot

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.

html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License. http://

creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License. http://

creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License. http://

creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License. http://

creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.

org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.

org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.

org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.

org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• LGPL: GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.

html

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose,
provided that the copyright holder is properly attributed. Redistribution, derivative
work, commercial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design
of the common face of the euro coins belongs to the European Commission. Authorised
is reproduction in a format without relief (drawings, paintings, films) provided they
are not detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

273

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by-sa/1.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.0/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/2.5/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://creativecommons.org/licenses/by/3.0/deed.en
http://www.gnu.org/licenses/gpl-2.0.txt
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://artlibre.org/licence/lal/de

List of Figures

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.

php

Copies of the GPL, the LGPL as well as a GFDL are included in chapter Licenses191. Please
note that images in the public domain do not require attribution. You may click on the
image numbers in the following table to open the webpage of the images in your webbrower.

191 Chapter 41 on page 277

274

http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php

List of Figures

1 Emijrpbot, Jarkko Piiroinen
2 Berland, Derbeth, MGA73bot2, SchlurcherBot, Slobot, Ufo

karadagli
3 Pietrodn CC-BY-SA-2.5

275

http://en.wikibooks.org/wiki/File:Merkkijono.svg
http://en.wikibooks.org/wiki/File:Zeiger.PNG
http://en.wikibooks.org/wiki/File:Pointers_in_programming.svg

41 Licenses

41.1 GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute ver-
batim copies of this license document, but changing
it is not allowed. Preamble

The GNU General Public License is a free, copyleft
license for software and other kinds of works.

The licenses for most software and other practi-
cal works are designed to take away your freedom
to share and change the works. By contrast, the
GNU General Public License is intended to guaran-
tee your freedom to share and change all versions
of a program–to make sure it remains free software
for all its users. We, the Free Software Foundation,
use the GNU General Public License for most of our
software; it applies also to any other work released
this way by its authors. You can apply it to your
programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Li-
censes are designed to make sure that you have
the freedom to distribute copies of free software
(and charge for them if you wish), that you receive
source code or can get it if you want it, that you
can change the software or use pieces of it in new
free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others
from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain re-
sponsibilities if you distribute copies of the soft-
ware, or if you modify it: responsibilities to respect
the freedom of others.

For example, if you distribute copies of such a pro-
gram, whether gratis or for a fee, you must pass
on to the recipients the same freedoms that you re-
ceived. You must make sure that they, too, receive
or can get the source code. And you must show
them these terms so they know their rights.

Developers that use the GNU GPL protect your
rights with two steps: (1) assert copyright on the
software, and (2) offer you this License giving you
legal permission to copy, distribute and/or modify
it.

For the developers’ and authors’ protection, the
GPL clearly explains that there is no warranty for
this free software. For both users’ and authors’
sake, the GPL requires that modified versions be
marked as changed, so that their problems will not
be attributed erroneously to authors of previous
versions.

Some devices are designed to deny users access to
install or run modified versions of the software in-
side them, although the manufacturer can do so.
This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software.
The systematic pattern of such abuse occurs in the
area of products for individuals to use, which is
precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to pro-
hibit the practice for those products. If such prob-
lems arise substantially in other domains, we stand
ready to extend this provision to those domains in
future versions of the GPL, as needed to protect
the freedom of users.

Finally, every program is threatened constantly by
software patents. States should not allow patents
to restrict development and use of software on
general-purpose computers, but in those that do,
we wish to avoid the special danger that patents
applied to a free program could make it effectively
proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-
free.

The precise terms and conditions for copying, dis-
tribution and modification follow. TERMS AND
CONDITIONS 0. Definitions.

“This License” refers to version 3 of the GNU Gen-
eral Public License.

“Copyright” also means copyright-like laws that ap-
ply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work
licensed under this License. Each licensee is ad-
dressed as “you”. “Licensees” and “recipients” may
be individuals or organizations.

To “modify” a work means to copy from or adapt
all or part of the work in a fashion requiring copy-
right permission, other than the making of an exact
copy. The resulting work is called a “modified ver-
sion” of the earlier work or a work “based on” the
earlier work.

A “covered work” means either the unmodified Pro-
gram or a work based on the Program.

To “propagate” a work means to do anything with
it that, without permission, would make you di-
rectly or secondarily liable for infringement under
applicable copyright law, except executing it on a
computer or modifying a private copy. Propaga-
tion includes copying, distribution (with or with-
out modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation
that enables other parties to make or receive copies.
Mere interaction with a user through a computer

network, with no transfer of a copy, is not convey-
ing.

An interactive user interface displays “Appropri-
ate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that
(1) displays an appropriate copyright notice, and
(2) tells the user that there is no warranty for the
work (except to the extent that warranties are pro-
vided), that licensees may convey the work under
this License, and how to view a copy of this License.
If the interface presents a list of user commands or
options, such as a menu, a prominent item in the
list meets this criterion. 1. Source Code.

The “source code” for a work means the preferred
form of the work for making modifications to it.
“Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that ei-
ther is an official standard defined by a recognized
standards body, or, in the case of interfaces spec-
ified for a particular programming language, one
that is widely used among developers working in
that language.

The “System Libraries” of an executable work in-
clude anything, other than the work as a whole,
that (a) is included in the normal form of packag-
ing a Major Component, but which is not part of
that Major Component, and (b) serves only to en-
able use of the work with that Major Component,
or to implement a Standard Interface for which an
implementation is available to the public in source
code form. A “Major Component”, in this context,
means a major essential component (kernel, window
system, and so on) of the specific operating system
(if any) on which the executable work runs, or a
compiler used to produce the work, or an object
code interpreter used to run it.

The “Corresponding Source” for a work in object
code form means all the source code needed to gen-
erate, install, and (for an executable work) run
the object code and to modify the work, including
scripts to control those activities. However, it does
not include the work’s System Libraries, or general-
purpose tools or generally available free programs
which are used unmodified in performing those ac-
tivities but which are not part of the work. For
example, Corresponding Source includes interface
definition files associated with source files for the
work, and the source code for shared libraries and
dynamically linked subprograms that the work is
specifically designed to require, such as by intimate
data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include any-
thing that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source code
form is that same work. 2. Basic Permissions.

All rights granted under this License are granted
for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met.
This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The out-
put from running a covered work is covered by this
License only if the output, given its content, con-
stitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as pro-
vided by copyright law.

You may make, run and propagate covered works
that you do not convey, without conditions so long
as your license otherwise remains in force. You may
convey covered works to others for the sole purpose
of having them make modifications exclusively for
you, or provide you with facilities for running those
works, provided that you comply with the terms
of this License in conveying all material for which
you do not control copyright. Those thus making or
running the covered works for you must do so exclu-
sively on your behalf, under your direction and con-
trol, on terms that prohibit them from making any
copies of your copyrighted material outside their
relationship with you.

Conveying under any other circumstances is per-
mitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it un-
necessary. 3. Protecting Users’ Legal Rights From
Anti-Circumvention Law.

No covered work shall be deemed part of an effec-
tive technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO
copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumven-
tion of such measures.

When you convey a covered work, you waive any le-
gal power to forbid circumvention of technological
measures to the extent such circumvention is ef-
fected by exercising rights under this License with
respect to the covered work, and you disclaim any
intention to limit operation or modification of the
work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid
circumvention of technological measures. 4. Con-
veying Verbatim Copies.

You may convey verbatim copies of the Program’s
source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately
publish on each copy an appropriate copyright no-
tice; keep intact all notices stating that this License
and any non-permissive terms added in accord with
section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipi-
ents a copy of this License along with the Program.

You may charge any price or no price for each copy
that you convey, and you may offer support or war-
ranty protection for a fee. 5. Conveying Modified
Source Versions.

You may convey a work based on the Program, or
the modifications to produce it from the Program,
in the form of source code under the terms of sec-
tion 4, provided that you also meet all of these con-
ditions:

* a) The work must carry prominent notices stating
that you modified it, and giving a relevant date. *
b) The work must carry prominent notices stating
that it is released under this License and any con-
ditions added under section 7. This requirement
modifies the requirement in section 4 to “keep in-
tact all notices”. * c) You must license the entire
work, as a whole, under this License to anyone who
comes into possession of a copy. This License will
therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This
License gives no permission to license the work in
any other way, but it does not invalidate such per-
mission if you have separately received it. * d) If
the work has interactive user interfaces, each must
display Appropriate Legal Notices; however, if the
Program has interactive interfaces that do not dis-
play Appropriate Legal Notices, your work need not
make them do so.

A compilation of a covered work with other sepa-
rate and independent works, which are not by their
nature extensions of the covered work, and which
are not combined with it such as to form a larger
program, in or on a volume of a storage or distribu-
tion medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to
limit the access or legal rights of the compilation’s
users beyond what the individual works permit. In-
clusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the
aggregate. 6. Conveying Non-Source Forms.

You may convey a covered work in object code form
under the terms of sections 4 and 5, provided that
you also convey the machine-readable Correspond-
ing Source under the terms of this License, in one
of these ways:

* a) Convey the object code in, or embodied in,
a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding
Source fixed on a durable physical medium custom-
arily used for software interchange. * b) Convey the
object code in, or embodied in, a physical product
(including a physical distribution medium), accom-
panied by a written offer, valid for at least three
years and valid for as long as you offer spare parts
or customer support for that product model, to
give anyone who possesses the object code either
(1) a copy of the Corresponding Source for all the
software in the product that is covered by this Li-
cense, on a durable physical medium customarily
used for software interchange, for a price no more
than your reasonable cost of physically performing
this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no
charge. * c) Convey individual copies of the object
code with a copy of the written offer to provide
the Corresponding Source. This alternative is al-
lowed only occasionally and noncommercially, and
only if you received the object code with such an
offer, in accord with subsection 6b. * d) Convey
the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent
access to the Corresponding Source in the same way
through the same place at no further charge. You
need not require recipients to copy the Correspond-
ing Source along with the object code. If the place
to copy the object code is a network server, the Cor-
responding Source may be on a different server (op-
erated by you or a third party) that supports equiv-
alent copying facilities, provided you maintain clear
directions next to the object code saying where to
find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long
as needed to satisfy these requirements. * e) Con-
vey the object code using peer-to-peer transmis-
sion, provided you inform other peers where the
object code and Corresponding Source of the work
are being offered to the general public at no charge
under subsection 6d.

A separable portion of the object code, whose
source code is excluded from the Corresponding
Source as a System Library, need not be included
in conveying the object code work.

A “User Product” is either (1) a “consumer prod-
uct”, which means any tangible personal property
which is normally used for personal, family, or
household purposes, or (2) anything designed or
sold for incorporation into a dwelling. In deter-
mining whether a product is a consumer product,
doubtful cases shall be resolved in favor of cover-
age. For a particular product received by a par-
ticular user, “normally used” refers to a typical or
common use of that class of product, regardless of
the status of the particular user or of the way in
which the particular user actually uses, or expects
or is expected to use, the product. A product is a
consumer product regardless of whether the prod-
uct has substantial commercial, industrial or non-
consumer uses, unless such uses represent the only
significant mode of use of the product.

“Installation Information” for a User Product
means any methods, procedures, authorization
keys, or other information required to install and
execute modified versions of a covered work in that
User Product from a modified version of its Corre-
sponding Source. The information must suffice to
ensure that the continued functioning of the modi-
fied object code is in no case prevented or interfered
with solely because modification has been made.

If you convey an object code work under this sec-
tion in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a
transaction in which the right of possession and
use of the User Product is transferred to the re-
cipient in perpetuity or for a fixed term (regard-
less of how the transaction is characterized), the
Corresponding Source conveyed under this section
must be accompanied by the Installation Informa-
tion. But this requirement does not apply if neither
you nor any third party retains the ability to install
modified object code on the User Product (for ex-
ample, the work has been installed in ROM).

The requirement to provide Installation Informa-
tion does not include a requirement to continue to
provide support service, warranty, or updates for a
work that has been modified or installed by the re-
cipient, or for the User Product in which it has been
modified or installed. Access to a network may be
denied when the modification itself materially and
adversely affects the operation of the network or
violates the rules and protocols for communication
across the network.

Corresponding Source conveyed, and Installation
Information provided, in accord with this section
must be in a format that is publicly documented
(and with an implementation available to the pub-
lic in source code form), and must require no spe-
cial password or key for unpacking, reading or copy-
ing. 7. Additional Terms.

“Additional permissions” are terms that supple-
ment the terms of this License by making excep-
tions from one or more of its conditions. Additional
permissions that are applicable to the entire Pro-
gram shall be treated as though they were included
in this License, to the extent that they are valid un-
der applicable law. If additional permissions apply
only to part of the Program, that part may be used
separately under those permissions, but the entire
Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may
at your option remove any additional permissions
from that copy, or from any part of it. (Additional
permissions may be written to require their own re-
moval in certain cases when you modify the work.)
You may place additional permissions on material,
added by you to a covered work, for which you have
or can give appropriate copyright permission.

Notwithstanding any other provision of this Li-
cense, for material you add to a covered work, you
may (if authorized by the copyright holders of that
material) supplement the terms of this License with
terms:

* a) Disclaiming warranty or limiting liability dif-
ferently from the terms of sections 15 and 16 of this
License; or * b) Requiring preservation of specified
reasonable legal notices or author attributions in
that material or in the Appropriate Legal Notices
displayed by works containing it; or * c) Prohibit-
ing misrepresentation of the origin of that material,
or requiring that modified versions of such material
be marked in reasonable ways as different from the
original version; or * d) Limiting the use for pub-
licity purposes of names of licensors or authors of
the material; or * e) Declining to grant rights under
trademark law for use of some trade names, trade-
marks, or service marks; or * f) Requiring indem-
nification of licensors and authors of that material
by anyone who conveys the material (or modified
versions of it) with contractual assumptions of lia-
bility to the recipient, for any liability that these
contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are con-
sidered “further restrictions” within the meaning
of section 10. If the Program as you received it,
or any part of it, contains a notice stating that it
is governed by this License along with a term that
is a further restriction, you may remove that term.
If a license document contains a further restriction
but permits relicensing or conveying under this Li-
cense, you may add to a covered work material gov-
erned by the terms of that license document, pro-
vided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with
this section, you must place, in the relevant source
files, a statement of the additional terms that ap-
ply to those files, or a notice indicating where to
find the applicable terms.

Additional terms, permissive or non-permissive,
may be stated in the form of a separately written
license, or stated as exceptions; the above require-
ments apply either way. 8. Termination.

You may not propagate or modify a covered work
except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is
void, and will automatically terminate your rights
under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)

from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, you do not qualify to receive new
licenses for the same material under section 10. 9.
Acceptance Not Required for Having Copies.

You are not required to accept this License in or-
der to receive or run a copy of the Program. Ancil-
lary propagation of a covered work occurring solely
as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require accep-
tance. However, nothing other than this License
grants you permission to propagate or modify any
covered work. These actions infringe copyright if
you do not accept this License. Therefore, by mod-
ifying or propagating a covered work, you indicate
your acceptance of this License to do so. 10. Au-
tomatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient
automatically receives a license from the original
licensors, to run, modify and propagate that work,
subject to this License. You are not responsible
for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transfer-
ring control of an organization, or substantially all
assets of one, or subdividing an organization, or
merging organizations. If propagation of a cov-
ered work results from an entity transaction, each
party to that transaction who receives a copy of the
work also receives whatever licenses to the work the
party’s predecessor in interest had or could give un-
der the previous paragraph, plus a right to posses-
sion of the Corresponding Source of the work from
the predecessor in interest, if the predecessor has
it or can get it with reasonable efforts.

You may not impose any further restrictions on the
exercise of the rights granted or affirmed under this
License. For example, you may not impose a license
fee, royalty, or other charge for exercise of rights
granted under this License, and you may not ini-
tiate litigation (including a cross-claim or counter-
claim in a lawsuit) alleging that any patent claim
is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of
it. 11. Patents.

A “contributor” is a copyright holder who autho-
rizes use under this License of the Program or a
work on which the Program is based. The work
thus licensed is called the contributor’s “contribu-
tor version”.

A contributor’s “essential patent claims” are all
patent claims owned or controlled by the contribu-
tor, whether already acquired or hereafter acquired,
that would be infringed by some manner, permit-
ted by this License, of making, using, or selling its
contributor version, but do not include claims that
would be infringed only as a consequence of fur-
ther modification of the contributor version. For
purposes of this definition, “control” includes the
right to grant patent sublicenses in a manner con-
sistent with the requirements of this License.

Each contributor grants you a non-exclusive, world-
wide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, of-
fer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent li-
cense” is any express agreement or commitment,
however denominated, not to enforce a patent (such
as an express permission to practice a patent or
covenant not to sue for patent infringement). To
“grant” such a patent license to a party means to
make such an agreement or commitment not to en-
force a patent against the party.

If you convey a covered work, knowingly relying
on a patent license, and the Corresponding Source
of the work is not available for anyone to copy,
free of charge and under the terms of this License,
through a publicly available network server or other
readily accessible means, then you must either (1)
cause the Corresponding Source to be so available,
or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or
(3) arrange, in a manner consistent with the re-
quirements of this License, to extend the patent
license to downstream recipients. “Knowingly re-
lying” means you have actual knowledge that, but
for the patent license, your conveying the covered
work in a country, or your recipient’s use of the
covered work in a country, would infringe one or
more identifiable patents in that country that you
have reason to believe are valid.

If, pursuant to or in connection with a single trans-
action or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and
grant a patent license to some of the parties re-
ceiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the
covered work, then the patent license you grant is
automatically extended to all recipients of the cov-
ered work and works based on it.

A patent license is “discriminatory” if it does not
include within the scope of its coverage, prohibits
the exercise of, or is conditioned on the non-
exercise of one or more of the rights that are specif-
ically granted under this License. You may not con-
vey a covered work if you are a party to an arrange-
ment with a third party that is in the business of
distributing software, under which you make pay-
ment to the third party based on the extent of your
activity of conveying the work, and under which the
third party grants, to any of the parties who would
receive the covered work from you, a discrimina-
tory patent license (a) in connection with copies
of the covered work conveyed by you (or copies
made from those copies), or (b) primarily for and in
connection with specific products or compilations
that contain the covered work, unless you entered
into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as ex-
cluding or limiting any implied license or other de-
fenses to infringement that may otherwise be avail-
able to you under applicable patent law. 12. No
Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you
from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultane-
ously your obligations under this License and any
other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you
agree to terms that obligate you to collect a roy-
alty for further conveying from those to whom you
convey the Program, the only way you could satisfy
both those terms and this License would be to re-
frain entirely from conveying the Program. 13. Use
with the GNU Affero General Public License.

Notwithstanding any other provision of this Li-
cense, you have permission to link or combine any

covered work with a work licensed under version
3 of the GNU Affero General Public License into
a single combined work, and to convey the result-
ing work. The terms of this License will continue
to apply to the part which is the covered work, but
the special requirements of the GNU Affero General
Public License, section 13, concerning interaction
through a network will apply to the combination
as such. 14. Revised Versions of this License.

The Free Software Foundation may publish revised
and/or new versions of the GNU General Public Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.

Each version is given a distinguishing version num-
ber. If the Program specifies that a certain num-
bered version of the GNU General Public License
“or any later version” applies to it, you have the
option of following the terms and conditions either
of that numbered version or of any later version
published by the Free Software Foundation. If the
Program does not specify a version number of the
GNU General Public License, you may choose any
version ever published by the Free Software Foun-
dation.

If the Program specifies that a proxy can decide
which future versions of the GNU General Public
License can be used, that proxy’s public statement
of acceptance of a version permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or
different permissions. However, no additional obli-
gations are imposed on any author or copyright
holder as a result of your choosing to follow a later
version. 15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NEC-
ESSARY SERVICING, REPAIR OR CORREC-
TION. 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY AP-
PLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MODIFIES AND/OR CON-
VEYS THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. 17. In-
terpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of lia-
bility provided above cannot be given local legal ef-
fect according to their terms, reviewing courts shall
apply local law that most closely approximates an

absolute waiver of all civil liability in connection
with the Program, unless a warranty or assump-
tion of liability accompanies a copy of the Program
in return for a fee.

END OF TERMS AND CONDITIONS How to Ap-
ply These Terms to Your New Programs

If you develop a new program, and you want it to
be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the pro-
gram. It is safest to attach them to the start of
each source file to most effectively state the exclu-
sion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief
idea of what it does.> Copyright (C) <year>
<name of author>

This program is free software: you can redistribute
it and/or modify it under the terms of the GNU
General Public License as published by the Free
Software Foundation, either version 3 of the Li-
cense, or (at your option) any later version.

This program is distributed in the hope that
it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU Gen-
eral Public License along with this program. If not,
see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by elec-
tronic and paper mail.

If the program does terminal interaction, make it
output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of au-
thor> This program comes with ABSOLUTELY
NO WARRANTY; for details type ‘show w’. This is
free software, and you are welcome to redistribute
it under certain conditions; type ‘show c’ for de-
tails.

The hypothetical commands ‘show w’ and ‘show c’
should show the appropriate parts of the General
Public License. Of course, your program’s com-
mands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work
as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if nec-
essary. For more information on this, and
how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not per-
mit incorporating your program into propri-
etary programs. If your program is a subrou-
tine library, you may consider it more use-
ful to permit linking proprietary applications
with the library. If this is what you want to
do, use the GNU Lesser General Public Li-
cense instead of this License. But first, please
read <http://www.gnu.org/philosophy/why-not-
lgpl.html>.

41.2 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Soft-
ware Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute ver-
batim copies of this license document, but changing
it is not allowed. 0. PREAMBLE

The purpose of this License is to make a manual,
textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it,
with or without modifying it, either commercially
or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get
credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means
that derivative works of the document must them-
selves be free in the same sense. It complements
the GNU General Public License, which is a copy-
left license designed for free software.

We have designed this License in order to use it
for manuals for free software, because free software
needs free documentation: a free program should
come with manuals providing the same freedoms
that the software does. But this License is not lim-
ited to software manuals; it can be used for any tex-
tual work, regardless of subject matter or whether
it is published as a printed book. We recommend
this License principally for works whose purpose is
instruction or reference. 1. APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other work,
in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under
the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in dura-
tion, to use that work under the conditions stated
herein. The "Document", below, refers to any such
manual or work. Any member of the public is a li-
censee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any
work containing the Document or a portion of it, ei-
ther copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or

authors of the Document to the Document’s overall
subject (or to related matters) and contains noth-
ing that could fall directly within that overall sub-
ject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not ex-
plain any mathematics.) The relationship could be
a matter of historical connection with the subject
or with related matters, or of legal, commercial,
philosophical, ethical or political position regard-
ing them.

The "Invariant Sections" are certain Secondary Sec-
tions whose titles are designated, as being those of
Invariant Sections, in the notice that says that the
Document is released under this License. If a sec-
tion does not fit the above definition of Secondary
then it is not allowed to be designated as Invari-
ant. The Document may contain zero Invariant
Sections. If the Document does not identify any
Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text
may be at most 25 words.

A "Transparent" copy of the Document means a
machine-readable copy, represented in a format
whose specification is available to the general pub-
lic, that is suitable for revising the document
straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs
or (for drawings) some widely available drawing ed-
itor, and that is suitable for input to text format-
ters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged
to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not
Transparent if used for any substantial amount of
text. A copy that is not "Transparent" is called
"Opaque".

Examples of suitable formats for Transparent
copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF de-
signed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that
can be read and edited only by proprietary word
processors, SGML or XML for which the DTD
and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or

PDF produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the
title page itself, plus such following pages as are
needed to hold, legibly, the material this License
requires to appear in the title page. For works in
formats which do not have any title page as such,
"Title Page" means the text near the most promi-
nent appearance of the work’s title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that
distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below,
such as "Acknowledgements", "Dedications", "En-
dorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document
means that it remains a section "Entitled XYZ" ac-
cording to this definition.

The Document may include Warranty Disclaimers
next to the notice which states that this License
applies to the Document. These Warranty Dis-
claimers are considered to be included by refer-
ence in this License, but only as regards disclaiming
warranties: any other implication that these War-
ranty Disclaimers may have is void and has no ef-
fect on the meaning of this License. 2. VERBATIM
COPYING

You may copy and distribute the Document in any
medium, either commercially or noncommercially,
provided that this License, the copyright notices,
and the license notice saying this License applies
to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to
those of this License. You may not use techni-
cal measures to obstruct or control the reading
or further copying of the copies you make or dis-
tribute. However, you may accept compensation
in exchange for copies. If you distribute a large
enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same condi-
tions stated above, and you may publicly display
copies. 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media
that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Doc-

ument’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies.
The front cover must present the full title with all
words of the title equally prominent and visible.
You may add other material on the covers in addi-
tion. Copying with changes limited to the covers,
as long as they preserve the title of the Document
and satisfy these conditions, can be treated as ver-
batim copying in other respects.

If the required texts for either cover are too volu-
minous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the
Document numbering more than 100, you must ei-
ther include a machine-readable Transparent copy
along with each Opaque copy, or state in or with
each Opaque copy a computer-network location
from which the general network-using public has
access to download using public-standard network
protocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the lat-
ter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until
at least one year after the last time you distribute
an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before redis-
tributing any large number of copies, to give them
a chance to provide you with an updated version of
the Document. 4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2
and 3 above, provided that you release the Modi-
fied Version under precisely this License, with the
Modified Version filling the role of the Document,
thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modi-
fied Version:

* A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Document,
and from those of previous versions (which should,
if there were any, be listed in the History section
of the Document). You may use the same title as
a previous version if the original publisher of that

version gives permission. * B. List on the Title
Page, as authors, one or more persons or entities
responsible for authorship of the modifications in
the Modified Version, together with at least five of
the principal authors of the Document (all of its
principal authors, if it has fewer than five), unless
they release you from this requirement. * C. State
on the Title page the name of the publisher of the
Modified Version, as the publisher. * D. Preserve
all the copyright notices of the Document. * E. Add
an appropriate copyright notice for your modifica-
tions adjacent to the other copyright notices. * F.
Include, immediately after the copyright notices, a
license notice giving the public permission to use
the Modified Version under the terms of this Li-
cense, in the form shown in the Addendum below.
* G. Preserve in that license notice the full lists of
Invariant Sections and required Cover Texts given
in the Document’s license notice. * H. Include an
unaltered copy of this License. * I. Preserve the
section Entitled "History", Preserve its Title, and
add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as
given on the Title Page. If there is no section En-
titled "History" in the Document, create one stat-
ing the title, year, authors, and publisher of the
Document as given on its Title Page, then add an
item describing the Modified Version as stated in
the previous sentence. * J. Preserve the network
location, if any, given in the Document for public
access to a Transparent copy of the Document, and
likewise the network locations given in the Docu-
ment for previous versions it was based on. These
may be placed in the "History" section. You may
omit a network location for a work that was pub-
lished at least four years before the Document it-
self, or if the original publisher of the version it
refers to gives permission. * K. For any section En-
titled "Acknowledgements" or "Dedications", Pre-
serve the Title of the section, and preserve in the
section all the substance and tone of each of the
contributor acknowledgements and/or dedications
given therein. * L. Preserve all the Invariant Sec-
tions of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent
are not considered part of the section titles. * M.
Delete any section Entitled "Endorsements". Such
a section may not be included in the Modified Ver-
sion. * N. Do not retitle any existing section to be
Entitled "Endorsements" or to conflict in title with
any Invariant Section. * O. Preserve any Warranty
Disclaimers.

If the Modified Version includes new front-matter
sections or appendices that qualify as Secondary
Sections and contain no material copied from the
Document, you may at your option designate some
or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled "Endorsements",
provided it contains nothing but endorsements of
your Modified Version by various parties—for ex-
ample, statements of peer review or that the text
has been approved by an organization as the au-
thoritative definition of a standard.

You may add a passage of up to five words as a
Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may
be added by (or through arrangements made by)
any one entity. If the Document already includes
a cover text for the same cover, previously added
by you or by arrangement made by the same entity

you are acting on behalf of, you may not add an-
other; but you may replace the old one, on explicit
permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document
do not by this License give permission to use their
names for publicity for or to assert or imply en-
dorsement of any Modified Version. 5. COMBIN-
ING DOCUMENTS

You may combine the Document with other docu-
ments released under this License, under the terms
defined in section 4 above for modified versions,
provided that you include in the combination all of
the Invariant Sections of all of the original docu-
ments, unmodified, and list them all as Invariant
Sections of your combined work in its license no-
tice, and that you preserve all their Warranty Dis-
claimers.

The combined work need only contain one copy of
this License, and multiple identical Invariant Sec-
tions may be replaced with a single copy. If there
are multiple Invariant Sections with the same name
but different contents, make the title of each such
section unique by adding at the end of it, in paren-
theses, the name of the original author or publisher
of that section if known, or else a unique number.
Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections
Entitled "History" in the various original docu-
ments, forming one section Entitled "History"; like-
wise combine any sections Entitled "Acknowledge-
ments", and any sections Entitled "Dedications".
You must delete all sections Entitled "Endorse-
ments". 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Docu-
ment and other documents released under this Li-
cense, and replace the individual copies of this Li-
cense in the various documents with a single copy
that is included in the collection, provided that you
follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a col-
lection, and distribute it individually under this Li-
cense, provided you insert a copy of this License
into the extracted document, and follow this Li-
cense in all other respects regarding verbatim copy-
ing of that document. 7. AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its derivatives
with other separate and independent documents or
works, in or on a volume of a storage or distribu-
tion medium, is called an "aggregate" if the copy-
right resulting from the compilation is not used to
limit the legal rights of the compilation’s users be-
yond what the individual works permit. When the
Document is included in an aggregate, this License
does not apply to the other works in the aggregate
which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is appli-
cable to these copies of the Document, then if the
Document is less than one half of the entire aggre-
gate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers
if the Document is in electronic form. Otherwise

they must appear on printed covers that bracket
the whole aggregate. 8. TRANSLATION

Translation is considered a kind of modification, so
you may distribute translations of the Document
under the terms of section 4. Replacing Invariant
Sections with translations requires special permis-
sion from their copyright holders, but you may in-
clude translations of some or all Invariant Sections
in addition to the original versions of these Invari-
ant Sections. You may include a translation of this
License, and all the license notices in the Docu-
ment, and any Warranty Disclaimers, provided that
you also include the original English version of this
License and the original versions of those notices
and disclaimers. In case of a disagreement between
the translation and the original version of this Li-
cense or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled "Acknowl-
edgements", "Dedications", or "History", the re-
quirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.
9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under
this License. Any attempt otherwise to copy, mod-
ify, sublicense, or distribute it is void, and will
automatically terminate your rights under this Li-
cense.

However, if you cease all violation of this License,
then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessa-
tion.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reason-
able means, this is the first time you have received
notice of violation of this License (for any work)
from that copyright holder, and you cure the vi-
olation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does
not terminate the licenses of parties who have re-
ceived copies or rights from you under this License.
If your rights have been terminated and not perma-
nently reinstated, receipt of a copy of some or all
of the same material does not give you any rights
to use it. 10. FUTURE REVISIONS OF THIS LI-
CENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation Li-
cense from time to time. Such new versions will be
similar in spirit to the present version, but may dif-
fer in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing
version number. If the Document specifies that a
particular numbered version of this License "or any
later version" applies to it, you have the option of
following the terms and conditions either of that
specified version or of any later version that has
been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify
a version number of this License, you may choose

any version ever published (not as a draft) by the
Free Software Foundation. If the Document speci-
fies that a proxy can decide which future versions of
this License can be used, that proxy’s public state-
ment of acceptance of a version permanently autho-
rizes you to choose that version for the Document.
11. RELICENSING

"Massive Multiauthor Collaboration Site" (or
"MMC Site") means any World Wide Web server
that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an
example of such a server. A "Massive Multiauthor
Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus pub-
lished on the MMC site.

"CC-BY-SA" means the Creative Commons
Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in
San Francisco, California, as well as future copyleft
versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Doc-
ument, in whole or in part, as part of another Doc-
ument.

An MMC is "eligible for relicensing" if it is licensed
under this License, and if all works that were first
published under this License somewhere other than
this MMC, and subsequently incorporated in whole
or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an
MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, pro-
vided the MMC is eligible for relicensing. ADDEN-
DUM: How to use this License for your documents

To use this License in a document you have writ-
ten, include a copy of the License in the document
and put the following copyright and license notices
just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documen-
tation License, Version 1.3 or any later version pub-
lished by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included
in the section entitled "GNU Free Documentation
License".

If you have Invariant Sections, Front-Cover Texts
and Back-Cover Texts, replace the "with . . .
Texts." line with this:

with the Invariant Sections being LIST THEIR TI-
TLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts,
or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of
program code, we recommend releasing these exam-
ples in parallel under your choice of free software
license, such as the GNU General Public License,
to permit their use in free software.

41.3 GNU Lesser General Public License

GNU LESSER GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute ver-
batim copies of this license document, but changing
it is not allowed.

This version of the GNU Lesser General Public Li-
cense incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supple-
mented by the additional permissions listed below.
0. Additional Definitions.

As used herein, “this License” refers to version 3
of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General
Public License.

“The Library” refers to a covered work governed by
this License, other than an Application or a Com-
bined Work as defined below.

An “Application” is any work that makes use of an
interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass
of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by com-
bining or linking an Application with the Library.
The particular version of the Library with which
the Combined Work was made is also called the
“Linked Version”.

The “Minimal Corresponding Source” for a Com-
bined Work means the Corresponding Source for
the Combined Work, excluding any source code for
portions of the Combined Work that, considered in
isolation, are based on the Application, and not on
the Linked Version.

The “Corresponding Application Code” for a Com-
bined Work means the object code and/or source
code for the Application, including any data and
utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the
System Libraries of the Combined Work. 1. Excep-
tion to Section 3 of the GNU GPL.

You may convey a covered work under sections 3
and 4 of this License without being bound by sec-
tion 3 of the GNU GPL. 2. Conveying Modified
Versions.

If you modify a copy of the Library, and, in your
modifications, a facility refers to a function or data
to be supplied by an Application that uses the fa-
cility (other than as an argument passed when the
facility is invoked), then you may convey a copy of
the modified version:

* a) under this License, provided that you make a
good faith effort to ensure that, in the event an Ap-
plication does not supply the function or data, the
facility still operates, and performs whatever part
of its purpose remains meaningful, or * b) under
the GNU GPL, with none of the additional permis-
sions of this License applicable to that copy.

3. Object Code Incorporating Material from Li-
brary Header Files.

The object code form of an Application may in-
corporate material from a header file that is part
of the Library. You may convey such object code
under terms of your choice, provided that, if the in-
corporated material is not limited to numerical pa-
rameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten
or fewer lines in length), you do both of the follow-
ing:

* a) Give prominent notice with each copy of the
object code that the Library is used in it and that
the Library and its use are covered by this License.
* b) Accompany the object code with a copy of the
GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of
your choice that, taken together, effectively do not
restrict modification of the portions of the Library
contained in the Combined Work and reverse en-
gineering for debugging such modifications, if you
also do each of the following:

* a) Give prominent notice with each copy of the
Combined Work that the Library is used in it and
that the Library and its use are covered by this Li-
cense. * b) Accompany the Combined Work with a
copy of the GNU GPL and this license document.
* c) For a Combined Work that displays copyright
notices during execution, include the copyright no-
tice for the Library among these notices, as well
as a reference directing the user to the copies of
the GNU GPL and this license document. * d)
Do one of the following: o 0) Convey the Mini-
mal Corresponding Source under the terms of this
License, and the Corresponding Application Code
in a form suitable for, and under terms that per-
mit, the user to recombine or relink the Applica-
tion with a modified version of the Linked Version
to produce a modified Combined Work, in the man-
ner specified by section 6 of the GNU GPL for con-
veying Corresponding Source. o 1) Use a suitable
shared library mechanism for linking with the Li-
brary. A suitable mechanism is one that (a) uses
at run time a copy of the Library already present
on the user’s computer system, and (b) will oper-
ate properly with a modified version of the Library
that is interface-compatible with the Linked Ver-
sion. * e) Provide Installation Information, but
only if you would otherwise be required to provide
such information under section 6 of the GNU GPL,
and only to the extent that such information is nec-
essary to install and execute a modified version of
the Combined Work produced by recombining or
relinking the Application with a modified version
of the Linked Version. (If you use option 4d0, the
Installation Information must accompany the Min-
imal Corresponding Source and Corresponding Ap-
plication Code. If you use option 4d1, you must
provide the Installation Information in the manner
specified by section 6 of the GNU GPL for convey-
ing Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work
based on the Library side by side in a single library
together with other library facilities that are not
Applications and are not covered by this License,
and convey such a combined library under terms of
your choice, if you do both of the following:

* a) Accompany the combined library with a copy
of the same work based on the Library, uncombined
with any other library facilities, conveyed under
the terms of this License. * b) Give prominent no-
tice with the combined library that part of it is a
work based on the Library, and explaining where
to find the accompanying uncombined form of the
same work.

6. Revised Versions of the GNU Lesser General
Public License.

The Free Software Foundation may publish revised
and/or new versions of the GNU Lesser General
Public License from time to time. Such new ver-
sions will be similar in spirit to the present version,
but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version num-
ber. If the Library as you received it specifies that
a certain numbered version of the GNU Lesser Gen-
eral Public License “or any later version” applies to
it, you have the option of following the terms and
conditions either of that published version or of any
later version published by the Free Software Foun-
dation. If the Library as you received it does not
specify a version number of the GNU Lesser Gen-
eral Public License, you may choose any version of
the GNU Lesser General Public License ever pub-
lished by the Free Software Foundation.

If the Library as you received it specifies that a
proxy can decide whether future versions of the
GNU Lesser General Public License shall apply,
that proxy’s public statement of acceptance of
any version is permanent authorization for you to
choose that version for the Library.

	1 Why learn C?
	2 History
	3 What you need before you can learn
	3.1 Getting Started
	3.2 Footnotes

	4 Using a Compiler
	5 A taste of C
	6 Intro exercise
	6.1 Introductory Exercises

	7 Beginning C
	8 Preliminaries
	8.1 Basic Concepts
	8.2 Block Structure, Statements, Whitespace, and Scope
	8.3 Basics of Using Functions
	8.4 The Standard Library

	9 Compiling
	9.1 Preprocessor
	9.2 Syntax Checking
	9.3 Object Code
	9.4 Linking
	9.5 Automation

	10 Structure and style
	10.1 C Structure and Style
	10.2 Introduction
	10.3 Line Breaks and Indentation
	10.4 Comments
	10.5 Links

	11 Error handling
	11.1 Preventing divide by zero errors
	11.2 Signals
	11.3 setjmp

	12 Variables
	12.1 Declaring, Initializing, and Assigning Variables
	12.2 Literals
	12.3 The Four Basic Data Types
	12.4 sizeof
	12.5 Data type modifiers
	12.6 const qualifier
	12.7 Magic numbers
	12.8 Scope
	12.9 Other Modifiers

	13 Simple Input and Output
	13.1 Output using printf()
	13.2 Other output methods
	13.3 Input using scanf()
	13.4 Links

	14 Simple math
	14.1 Operators and Assignments

	15 Further math
	15.1 Trigonometric functions
	15.2 Hyperbolic functions
	15.3 Exponential and logarithmic functions
	15.4 Power functions
	15.5 Nearest integer, absolute value, and remainder functions
	15.6 Error and gamma functions
	15.7 Further reading

	16 Control
	16.1 Conditionals
	16.2 Loops
	16.3 One last thing: goto
	16.4 Examples
	16.5 Further reading

	17 Procedures and functions
	17.1 More on functions
	17.2 Writing functions in C
	17.3 Using C functions
	17.4 Functions from the C Standard Library
	17.5 Variable-length argument lists

	18 Preprocessor
	18.1 Directives
	18.2 Useful Preprocessor Macros for Debugging

	19 Libraries
	19.1 What to put in header files
	19.2 Further reading

	20 Standard libraries
	20.1 History
	20.2 Design
	20.3 ANSI Standard
	20.4 Common support libraries
	20.5 Compiler built-in functions
	20.6 POSIX standard library

	21 File IO
	21.1 Introduction
	21.2 Streams
	21.3 Standard Streams
	21.4 FILE pointers
	21.5 Opening and Closing Files
	21.6 Other file access functions
	21.7 Functions that Modify the File Position Indicator
	21.8 Error Handling Functions
	21.9 Other Operations on Files
	21.10 Reading from Files
	21.11 Writing to Files
	21.12 References

	22 Beginning exercises
	22.1 Variables
	22.2 Simple I/O
	22.3 Program Flow
	22.4 Functions
	22.5 Math
	22.6 Recursion

	23 In-depth C ideas
	24 Arrays
	24.1 Arrays
	24.2 Strings

	25 Pointers and arrays
	25.1 Declaring pointers
	25.2 Assigning values to pointers
	25.3 Pointer dereferencing
	25.4 Pointers and Arrays
	25.5 Pointers in Function Arguments
	25.6 Pointers and Text Strings
	25.7 Pointers to Functions
	25.8 Practical use of function pointers in C
	25.9 Examples of pointer constructs
	25.10 sizeof
	25.11 External Links

	26 Memory management
	26.1 EXAMPLE
	26.2 The calloc function
	26.3 The realloc function
	26.4 The free function
	26.5 References

	27 Strings
	27.1 Syntax
	27.2 The <string.h> Standard Header
	27.3 Examples
	27.4 Further reading

	28 Complex types
	28.1 Data structures
	28.2 Type modifiers

	29 Networking in UNIX
	29.1 A simple client
	29.2 A simple server
	29.3 Useful network functions
	29.4 FAQs

	30 Common practices
	30.1 Dynamic multidimensional arrays
	30.2 Constructors and destructors
	30.3 Nulling freed pointers
	30.4 Macro conventions
	30.5 Further reading

	31 C and beyond
	32 Language extensions
	32.1 External links

	33 Mixing languages
	33.1 Assembler
	33.2 Cg
	33.3 Java
	33.4 Perl
	33.5 Python
	33.6 For further reading
	33.7 References

	34 Code library
	35 Computer Programming
	36 Statements
	37 C Reference Tables
	38 Reference Tables
	38.1 List of Keywords
	38.2 List of Standard Headers
	38.3 Table of Operators
	38.4 Table of Data Types

	39 Compilers
	39.1 Free (or with a free version)
	39.2 Commercial

	40 Contributors
	List of Figures
	41 Licenses
	41.1 GNU GENERAL PUBLIC LICENSE
	41.2 GNU Free Documentation License
	41.3 GNU Lesser General Public License

